File size: 14,576 Bytes
a298c6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import re
from langchain.agents import initialize_agent, Tool
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
import pandas as pd
from pandasai.llm.openai import OpenAI
from pandasai import SmartDataframe
    
# Initialize a blank DataFrame as a global variable
global_df = pd.DataFrame()


class ChatHandler:
    def __init__(self, vector_db_path, open_api_key, grok_api_key,db_final):
        self.vector_db_path = vector_db_path
        self.openai_embeddings = OpenAIEmbeddings(api_key=open_api_key)
        self.llm_openai = ChatOpenAI(model_name="gpt-4", api_key=open_api_key, max_tokens=500, temperature=0.2)
        self.grok_api_key = grok_api_key
        self.openai_api_key = open_api_key
        self.sql_db = db_final

    def _load_documents_from_vector_db(self, query):
        """Fetch relevant documents from the vector database."""
        results = []

        # Debug: Print the query being processed
        print(f"Processing query: {query}")

        for root, dirs, files in os.walk(self.vector_db_path):
            print(f"Searching in directory: {root}")  # Debug: Current directory being processed
            for dir in dirs:
                index_path = os.path.join(root, dir, "index.faiss")

                # Debug: Check if FAISS index exists
                if os.path.exists(index_path):
                    print(f"Found FAISS index at: {index_path}")

                    # Load the FAISS vector store
                    try:
                        vector_store = FAISS.load_local(
                            os.path.join(root, dir),
                            self.openai_embeddings,
                            allow_dangerous_deserialization=True
                        )
                        print(f"Loaded FAISS vector store from: {os.path.join(root, dir)}")
                    except Exception as e:
                        print(f"Error loading FAISS store: {e}")
                        continue

                    # Perform similarity search
                    try:
                        
                        response_with_scores = vector_store.similarity_search_with_relevance_scores(query, k=100)
                        #print(response_with_scores)
                        print(f"Similarity search returned {len(response_with_scores)} results.")
                        
                        filtered_results = [
                            (doc, score) for doc, score in response_with_scores                            
                            if score is not None and score > 0.7 #and material_name.lower() in doc.page_content.lower()  # Check material name in document
                        ]
                        print(f"Filtered results: {filtered_results}")
                        response_with_scores = filtered_results
                        # Debug: Print each document and score
                        for doc, score in response_with_scores:
                            print(f"Document: {doc.page_content[:100]}... Score: {score}")

                        results.extend([(doc.page_content, score) for doc, score in response_with_scores])
                    except Exception as e:
                        print(f"Error during similarity search: {e}")

        # Sort and return results
        sorted_results = [doc for doc, score in sorted(results, key=lambda x: -x[1])]
        print(f"Total results after sorting: {len(sorted_results)}")
       
        return sorted_results

    def _load_schema_from_database(self, query):
        
        """

        Fetch database schema, generate a SQL query from the user's question, and execute it.

        """
        try:
            # Fetch the schema
            schema = self.sql_db.get_table_info()

            # Define the prompt template
            template_query_generation = """

            Based on the table schema below, write a SQL query that would answer the user's question.

            Only write the SQL query without explanations.



            Schema:

            {schema}



            Question: {question}



            SQL Query:

            """
            prompt = PromptTemplate(
                input_variables=["schema", "question"],
                template=template_query_generation
            )

            # Initialize the language modelgpt-4
            llm = ChatOpenAI(model_name="gpt-4", api_key=self.openai_api_key, max_tokens=500, temperature=0.2)

            # Create the runnable sequence
            chain = prompt | llm | StrOutputParser()

            # Generate the SQL query
            sql_query = chain.invoke({"schema": schema, "question": query}).strip()

            if not sql_query:
                return "Could not generate an SQL query for your question."

            # Execute the SQL query
            try:
                result = self.sql_db.run(sql_query)
                print(f"SQL query executed successfully. Result: {result}")
                
            except Exception as e:
                return f"Error executing SQL query: {str(e)}"

            # If no result, return an appropriate message
            if not result:
                return "Query executed, but no results were returned."
           
            # Return the result
            return result

        except Exception as e:
            return f"Error fetching schema details or processing query: {str(e)}"

    def answer_question(self, query, visual_query):
        global global_df
        """Determine whether to use vector database or SQL database for the query."""
        tools = [
            # {
            #     "name": "Document Vector Store",
            #     "function": lambda q: "\n".join(self._load_documents_from_vector_db(q)),
            #     "description": """Search within the uploaded documents stored in the vector database. 
            #     Display the response as a combination of response summary and the response data in the form of table.
            #     If the user requested comparison between two or more years, data should be shown for all the years. (For example, if the user requested from 2020 to 2024, then display the output table with the columns [Month, Material value in 2020, Material value in 2021, Material value in 2022, Material value in 2023, Material value in 2024]) so that the records will be displayed for all the months from Jaunary to December across the years. 
            #      display the material quantity in blue colour if it the 'Type' column value is 'actual'. 
            #      display the Material Quanity in red colour if its value is 'predicted'. 
            #      include the table data in the Final answer of agent executor invoke.""",
            # },
              {
                  "name": "Database Schema",
                  "function": lambda q: self._load_schema_from_database(q),
                  "description": """Search within the database schema and generate SQL-based responses. 

                  The database has single table 'sarima_forecast_results' which contains the columns 'material_date', 'material_name', 'material_count', and 'type'. If the material name is given,  frame the query in such a way that the material_name is not case-sensitive.

                 display the response as a combination of response summary and the response data in the form of table.

                 If the user requested comparison between two or more years or the user asks for the data for all years, data should be shown for all the years with month as first column and the years like 2020, 2021 etc as the adjacent columns. Do not show everything in the same column. (For example, if the user requested from 2020 to 2024, then display the output table with the columns [Month, Material value in 2020, Material value in 2020, Material value in 2021, Material value in 2022, Material value in 2023, Material value in 2024]) so that the records will be displayed for all the months from Jaunary to December across the years. 

                  include the table data in the Final answer.""",
              },
        ]

        agent_prompt = PromptTemplate(
            input_variables=["input", "agent_scratchpad"],
            template="""

                        You are a highly skilled AI assistant specializing in document analysis.

                        I have uploaded a document containing material demand forecasts with columns for 'date', 'Material Name', 'Material Quantity', and 'Type'.

                        

                        The data includes historical demand information for various items.



                        1. The uploaded document includes:

                           - **Date:** The date of demand entry.

                           - **Material Name:** The name of the material or equipment.

                           - **Material Quantity:** The number of units Utilized or forecasted.

                           - **Type:** Type contains actual or forecasted, actual represents the actual material utilized and forecasted represents the prediction by ai model.



                        2. I may ask questions such as:

                           - Forecasting future demand for specific items.

                           - Analyzing trends or patterns for materials over time.

                           - Summarizing the highest or lowest demands within a specific date range.

                           - Comparing demand values between two or more items.



                        Your task:

                        - If the query relates to forecasting or involves the uploaded document, extract the necessary information from it 

                          and provide precise, professional, and data-driven responses.

                        

                        Make sure your answers are aligned with the uploaded document, depending on the context of the query.

                         display the response as mentioned in the tool description.  display the output table whereever it is required.

                         include the table data in the Final answer if it is there.

                        Tools available to you:

                        {tools}



                        Input Question:

                        {input}



                        {agent_scratchpad}

                    """,
        )

        # Initialize the agent
        agent = initialize_agent(
            tools=[Tool(name=t["name"], func=t["function"], description=t["description"]) for t in tools],
            llm=self.llm_openai,
            agent="zero-shot-react-description",
            verbose=True,
            prompt=agent_prompt
        )

        try:
            response = agent.invoke(query, handle_parsing_errors=True)
            print(f"response:{response}")
                   

           
            if isinstance(response, dict) and "output" in response:
                response = response["output"]  # Extract and return only the output field
            else:
                response = response  # Fallback if output field is not present
            if visual_query is not None:
                # Check if the response contains table-like formatting
                if "|" in response and "---" in response:
                    print("Table data is present in the response.")
                    #convert table data into dataframe
                    # Extract table rows
                    table_pattern = r"\|.*\|"
                    import re
                    table_data = re.findall(table_pattern, response)
                    # Remove separator lines (like |---|---|)
                    filtered_data = [row for row in table_data if not re.match(r"\|\-+\|", row)]

                    # Split rows into columns
                    split_data = [row.strip('|').split('|') for row in filtered_data]

                    # Create DataFrame
                    columns = [col.strip() for col in split_data[0]]  # First row is the header
                    data = [list(map(str.strip, row)) for row in split_data[1:]]  # Remaining rows are data
                    global_df = pd.DataFrame(data, columns=columns)
                    # Function to convert datatypes
                    global_df = convert_column_types(global_df)
                    print(f"Dataframe created from response:\n{global_df}")
                    visual_response = create_visualization_csv(visual_query)
                    
                    
            else:
                print("No table data found in the response.")
                visual_response = None
            return response, visual_response
        except Exception as e:
            return f"Error while processing your query: {str(e)}", None



def create_visualization_csv(visual_query):
   
    global_df
    #import matplotlib
    #matplotlib.use('TkAgg')  # Replace with 'QtAgg' or 'MacOSX' if on macOS

    visual_query = visual_query + "  create chart with suitable x and y axis as user requested. use proper axis values. Do not miss any values.  add legend in the chart.  mention axis labels in the chart. mention only month name in date axis and not the numbers."

    
    llm_chart = OpenAI()
    #from pandasai import PandasAI
    #pandas_ai = PandasAI(llm_chart, show_plots=False)
    #pandas_ai = PandasAI(show_plots=False)  # Avoids attempting to show plots

    sdf = SmartDataframe(global_df, config={"llm": llm_chart})
    llm_response = sdf.chat(visual_query)
    if "no result" in llm_response:
        return " There is a problem in generating the chart. Please try again ater some time."
    return llm_response


def convert_column_types(df):
    for col in df.columns:
        # Try to convert to integer
        if all(df[col].str.isdigit()):
            df[col] = df[col].astype(int)
        # Try to convert to datetime
        else:
            try:
                df[col] = pd.to_datetime(df[col], format='%Y-%m-%d', errors='raise')
            except ValueError:
                # Leave as string if neither integer nor date
                pass
    return df