Spaces:
Sleeping
Sleeping
import os | |
import hashlib | |
import json | |
import pandas as pd | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import OpenAIEmbeddings | |
from PyPDF2 import PdfReader | |
from docx import Document | |
class FileHandler: | |
def __init__(self, vector_db_path, open_api_key, grok_api_key): | |
self.vector_db_path = vector_db_path | |
self.openai_embeddings = OpenAIEmbeddings(api_key=open_api_key) | |
self.grok_api_key = grok_api_key | |
def handle_file_upload(self, file_name, file_content): | |
try: | |
# Debug the type of the file object | |
# Extract the base file name | |
base_file_name = os.path.basename(file_name) | |
# Replace spaces with underscores and make the name lowercase | |
formatted_file_name = base_file_name.replace(" ", "_").lower() | |
file_content_encode = file_content.encode('utf-8') | |
file_hash = hashlib.md5(file_content_encode).hexdigest() | |
file_key = f"{formatted_file_name}_{file_hash}" | |
vector_store_dir = os.path.join(self.vector_db_path, file_key) | |
os.makedirs(vector_store_dir, exist_ok=True) | |
vector_store_path = os.path.join(vector_store_dir, "index.faiss") | |
if os.path.exists(vector_store_path): | |
return {"message": "File already processed."} | |
# Process file based on type | |
if file_name.endswith(".pdf"): | |
texts, metadatas = self.load_and_split_pdf(file_content) | |
elif file_name.endswith(".docx"): | |
texts, metadatas = self.load_and_split_docx(file_content) | |
elif file_name.endswith(".txt"): | |
texts, metadatas = self.load_and_split_txt(file_content) | |
elif file_name.endswith(".xlsx"): | |
texts, metadatas = self.load_and_split_table(file_content) | |
elif file_name.endswith(".csv"): | |
texts, metadatas = self.load_and_split_csv(file_content) | |
else: | |
raise ValueError("Unsupported file format.") | |
if not texts: | |
return {"message": "No text extracted from the file. Check the file content."} | |
# # Generate embeddings using Grok API | |
vector_store = FAISS.from_texts(texts, self.openai_embeddings, metadatas=metadatas) | |
vector_store.save_local(vector_store_dir) | |
metadata = { | |
"filename": file_name, | |
"file_size": len(file_content), | |
} | |
metadata_path = os.path.join(vector_store_dir, "metadata.json") | |
with open(metadata_path, 'w') as md_file: | |
json.dump(metadata, md_file) | |
return {"message": "File processed successfully."} | |
except Exception as e: | |
return {"message": f"Error processing file: {str(e)}"} | |
def load_and_split_pdf(self, file): | |
reader = PdfReader(file) | |
texts = [] | |
metadatas = [] | |
for page_num, page in enumerate(reader.pages): | |
text = page.extract_text() | |
if text: | |
texts.append(text) | |
metadatas.append({"page_number": page_num + 1}) | |
return texts, metadatas | |
def load_and_split_docx(self, file): | |
doc = Document(file) | |
texts = [] | |
metadatas = [] | |
for para_num, paragraph in enumerate(doc.paragraphs): | |
if paragraph.text: | |
texts.append(paragraph.text) | |
metadatas.append({"paragraph_number": para_num + 1}) | |
return texts, metadatas | |
def load_and_split_txt(self, content): | |
text = content.decode("utf-8") | |
lines = text.split('\n') | |
texts = [line for line in lines if line.strip()] | |
metadatas = [{}] * len(texts) | |
return texts, metadatas | |
def load_and_split_table(self, content): | |
excel_data = pd.read_excel(content, sheet_name=None) | |
texts = [] | |
metadatas = [] | |
for sheet_name, df in excel_data.items(): | |
df = df.dropna(how='all', axis=0).dropna(how='all', axis=1) | |
df = df.fillna('N/A') | |
for _, row in df.iterrows(): | |
row_dict = row.to_dict() | |
# Combine key-value pairs into a string | |
row_text = ', '.join([f"{key}: {value}" for key, value in row_dict.items()]) | |
texts.append(row_text) | |
metadatas.append({"sheet_name": sheet_name}) | |
return texts, metadatas | |
def load_and_split_csv(self, content): | |
print('its csv') | |
csv_data = pd.read_csv(content) | |
print(csv_data) | |
texts = [] | |
metadatas = [] | |
csv_data = csv_data.dropna(how='all', axis=0).dropna(how='all', axis=1) | |
csv_data = csv_data.fillna('N/A') | |
for _, row in csv_data.iterrows(): | |
row_dict = row.to_dict() | |
row_text = ', '.join([f"{key}: {value}" for key, value in row_dict.items()]) | |
texts.append(row_text) | |
metadatas.append({"row_index": _}) | |
print(texts) | |
return texts, metadatas | |