Redmind commited on
Commit
e4950ac
·
verified ·
1 Parent(s): 6afb25e

Upload 3 files

Browse files
Files changed (3) hide show
  1. Inbound.pdf +0 -0
  2. app.py +460 -0
  3. requirements.txt +15 -0
Inbound.pdf ADDED
Binary file (162 kB). View file
 
app.py ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Chat_with_agent_v4.ipynb
3
+ Automatically generated by Colab.
4
+ Original file is located at
5
+ https://colab.research.google.com/drive/1T5Buj_yHaAnfoO__2-gCFDSvBVheiHrF
6
+ """
7
+
8
+ from PIL import Image
9
+ import base64
10
+ from io import BytesIO
11
+ import os
12
+ import requests
13
+ import gradio as gr
14
+ #import nltk
15
+ from langchain_core.prompts import ChatPromptTemplate
16
+ from langchain_core.output_parsers import StrOutputParser
17
+ from langchain_core.runnables import RunnableSequence, RunnableLambda
18
+ from langchain_openai import ChatOpenAI
19
+ from langchain_openai import OpenAIEmbeddings
20
+ from langchain_community.vectorstores import FAISS
21
+ from langchain_community.utilities import SQLDatabase
22
+ from langchain.agents import create_tool_calling_agent, AgentExecutor, Tool
23
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
24
+ from langchain.tools import StructuredTool
25
+ from langchain.pydantic_v1 import BaseModel, Field
26
+ from PyPDF2 import PdfReader
27
+ from nltk.tokenize import sent_tokenize
28
+ from sqlalchemy import create_engine
29
+ from sqlalchemy.sql import text
30
+ import json
31
+ import nltk
32
+ nltk.download('punkt')
33
+
34
+ open_api_key_token = os.environ['OPEN_AI_API']
35
+
36
+ os.environ['OPENAI_API_KEY'] = open_api_key_token
37
+ db_uri = 'postgresql+psycopg2://postgres:postpass@193.203.162.39:5432/warehouseAi'
38
+ # Database setup
39
+
40
+ db = SQLDatabase.from_uri(db_uri)
41
+
42
+ # LLM setup
43
+ #llm = ChatOpenAI(model="gpt-3.5-turbo-0125",max_tokens=150,temperature=0.1)
44
+ llm = ChatOpenAI(model="gpt-4o-mini",max_tokens=250,temperature=0.1)
45
+
46
+ def get_schema(_):
47
+ schema_info = db.get_table_info() # This should be a string of your SQL schema
48
+ return schema_info
49
+
50
+ def generate_sql_query(question):
51
+ schema = get_schema(None)
52
+ template_query_generation = """
53
+ Schema: {schema}
54
+ Question: {question}
55
+ Provide a SQL query to answer the above question using the exact field names and table names specified in the schema.
56
+ SQL Query (Please provide only the SQL statement without explanations or formatting):
57
+ """
58
+ prompt_query_generation = ChatPromptTemplate.from_template(template_query_generation)
59
+ schema_and_question = RunnableLambda(lambda _: {'schema': schema, 'question': question})
60
+ sql_chain = RunnableSequence(
61
+ schema_and_question,
62
+ prompt_query_generation,
63
+ llm.bind(stop=["SQL Query End"]), # Adjust the stop sequence to your need
64
+ StrOutputParser()
65
+ )
66
+ sql_query = sql_chain.invoke({})
67
+ return sql_query.strip()
68
+
69
+ def run_query(query):
70
+ # Clean the query by removing markdown symbols and trimming whitespace
71
+ clean_query = query.replace("```sql", "").replace("```", "").strip()
72
+ #print(f"Executing SQL Query: {clean_query}")
73
+ try:
74
+ result = db.run(clean_query)
75
+ return result
76
+ except Exception as e:
77
+ print(f"Error executing query: {e}")
78
+ return None
79
+
80
+ # Define the database query tool
81
+ # The function that uses the above models
82
+ # Define the function that will handle the database query
83
+ def database_tool(question):
84
+ # print(question)
85
+ sql_query = generate_sql_query(question)
86
+ ##print(sql_query)
87
+ return run_query(sql_query)
88
+
89
+ def get_ASN_data(question):
90
+ #print(question)
91
+ base_url = "http://193.203.162.39:9090/nxt-wms/trnHeader?"
92
+ complete_url = f"{base_url}branchMaster.id=343&transactionUid={question}&userId=164&transactionType=ASN"
93
+ #print("complete url")
94
+ #print(complete_url)
95
+ try:
96
+ response = requests.get(complete_url)
97
+ data = response.json()
98
+ response.raise_for_status()
99
+
100
+ if 'result' in data and 'content' in data['result'] and data['result']['content']:
101
+ content = data['result']['content'][0]
102
+ trnHeaderAsn = content['trnHeaderAsn']
103
+ party = content['party'][0]
104
+
105
+ transactionUid = trnHeaderAsn['transactionUid']
106
+ customerOrderNo = trnHeaderAsn.get('customerOrderNo', 'N/A')
107
+ orderDate = trnHeaderAsn.get('orderDate', 'N/A')
108
+ customerInvoiceNo = trnHeaderAsn.get('customerInvoiceNo', 'N/A')
109
+ invoiceDate = trnHeaderAsn.get('invoiceDate', 'N/A')
110
+ expectedReceivingDate = trnHeaderAsn['expectedReceivingDate']
111
+ transactionStatus = trnHeaderAsn['transactionStatus']
112
+ shipper_code = party['shipper']['code'] if party['shipper'] else 'N/A'
113
+ shipper_name = party['shipper']['name'] if party['shipper'] else 'N/A'
114
+
115
+ data = [
116
+ ["Transaction UID", transactionUid],
117
+ ["Customer Order No", customerOrderNo],
118
+ ["Order Date", orderDate],
119
+ ["Customer Invoice No", customerInvoiceNo],
120
+ ["Invoice Date", invoiceDate],
121
+ ["Expected Receiving Date", expectedReceivingDate],
122
+ ["Transaction Status", transactionStatus],
123
+ ["Shipper Code", shipper_code],
124
+ ["Shipper Name", shipper_name]
125
+ ]
126
+ return f"The ASN details of {question} is {data}."
127
+ else:
128
+ return "ASN Details are not found. Please contact system administrator."
129
+
130
+ except requests.exceptions.HTTPError as http_err:
131
+ print(f"HTTP error occurred: {http_err}")
132
+ except Exception as err:
133
+ print(f"An error occurred: {err}")
134
+
135
+ get_ASN_data("ASN24072400001")
136
+
137
+ def load_and_split_pdf(pdf_path):
138
+ reader = PdfReader(pdf_path)
139
+ text = ''
140
+ for page in reader.pages:
141
+ text += page.extract_text()
142
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
143
+ texts = text_splitter.split_text(text)
144
+ return texts
145
+ def create_vector_store(texts):
146
+ embeddings = OpenAIEmbeddings()
147
+ vector_store = FAISS.from_texts(texts, embeddings)
148
+ return vector_store
149
+
150
+ def query_vector_store(vector_store, query):
151
+ docs = vector_store.similarity_search(query, k=5)
152
+ #print(f"Vector store return: {docs}")
153
+ return docs
154
+
155
+ def summarize_document(docs):
156
+ summarized_docs = []
157
+ for doc in docs:
158
+ if isinstance(doc, list):
159
+ doc_content = ' '.join([d.page_content for d in doc])
160
+ else:
161
+ doc_content = doc.page_content
162
+
163
+ sentences = sent_tokenize(doc_content)
164
+ if len(sentences) > 5:
165
+ summarized_content = ' '.join(sentences[:5])
166
+ else:
167
+ summarized_content = doc_content
168
+ summarized_docs.append(summarized_content)
169
+ return '\n\n'.join(summarized_docs)
170
+ pdf_path = "Inbound.pdf"
171
+ #pdf_path = r"D:\rajesh\python\chat_agent\Inbound.pdf"
172
+ texts = load_and_split_pdf(pdf_path)
173
+ vector_store = create_vector_store(texts)
174
+
175
+ def document_data_tool(question):
176
+ #print(f"Document data tool enter: {question}")
177
+ # query_string = question['tags'][0] if 'tags' in question and question['tags'] else ""
178
+ query_response = query_vector_store(vector_store, question)
179
+ print("query****")
180
+ print(query_response)
181
+ #summarized_response = summarize_document(query_response)
182
+ #print("summary***")
183
+ #print(summarized_response)
184
+ return query_response
185
+
186
+ def make_api_request(url, params):
187
+ import requests
188
+ """Generic function to make API GET requests and return JSON data."""
189
+ try:
190
+ response = requests.get(url, params=params)
191
+ response.raise_for_status() # Raises an HTTPError if the response was an error
192
+ return response.json() # Return the parsed JSON data
193
+ except requests.exceptions.HTTPError as http_err:
194
+ print(f"HTTP error occurred: {http_err}")
195
+ except Exception as err:
196
+ print(f"An error occurred: {err}")
197
+
198
+ name=""
199
+ warehouse_id = ""
200
+ apis = [
201
+ #fetch warehouse ID
202
+ {
203
+ "url": "http://193.203.162.39:9090/nxt-wms/userWarehouse/fetchWarehouseForUserId?",
204
+ "params": {"query": name, "userId": "164"}
205
+ },
206
+ #fetch customer id
207
+ {
208
+ "url": "http://193.203.162.39:9090/nxt-wms/userCustomer/fetchCustomerForUserId?",
209
+ "params": {"query": "TESTING 123", "userId": "164", "status": "Active"}
210
+ },
211
+ #Stock summary based on warehouse id
212
+ {
213
+ "url": "http://193.203.162.39:9090/nxt-wms/transactionHistory/stockSummary?",
214
+ "params": {"branchId": "343", "onDate": "2024-08-06", "warehouseId" : warehouse_id }
215
+ }
216
+ ]
217
+
218
+ def inventory_report(question):
219
+
220
+
221
+ name = question.split(":")[0]
222
+ #print(question)
223
+ question = question.split(":")[1]
224
+ #print(name)
225
+ import requests
226
+
227
+ data = make_api_request(apis[0]["url"], apis[0]["params"])
228
+ if data:
229
+ #print(data)
230
+ # Extracting the id for the warehouse with the name "WH"
231
+ warehouse_id = next((item['id'] for item in data['result'] if item['name'] == name), None)
232
+
233
+ #print(f"The id for the warehouse named {name} is: {warehouse_id}")
234
+ #Step 3: Update the placeholder with the actual warehouse_id
235
+ for api in apis:
236
+ if "warehouseId" in api["params"]:
237
+ api["params"]["warehouseId"] = warehouse_id
238
+
239
+ #print(apis[2]["url"])
240
+ #print(apis[2]["params"])
241
+ data1 = make_api_request(apis[2]["url"], apis[2]["params"])
242
+ #if data1:
243
+ #print(data1)
244
+
245
+ from tabulate import tabulate
246
+
247
+
248
+ headers = ["S.No","Warehouse Code", "Warehouse Name", "Customer Code", "Customer Name", "Item Code", "Item Name", "Currency", "EAN", "UOM", "Quantity", "Gross Weight", "Volume", "Total Value"]
249
+ table_data = []
250
+
251
+ for index, item in enumerate(data1['result'], start=1):
252
+ row = [
253
+ index, # Serial number
254
+ item['warehouse']['code'],
255
+ item['warehouse']['name'],
256
+ item['customer']['code'],
257
+ item['customer']['name'],
258
+ item['skuMaster']['code'],
259
+ item['skuMaster']['name'],
260
+ item['currency']['code'],
261
+ item['eanUpc'],
262
+ item['uom']['code'],
263
+ item['totalQty'],
264
+ item['grossWeight'],
265
+ item['volume'],
266
+ item['totalValue']
267
+ ]
268
+ table_data.append(row)
269
+
270
+
271
+ #if table_data:
272
+ #print(tabulate(table_data, headers=headers, tablefmt="grid"))
273
+
274
+ # Convert to pandas DataFrame
275
+ import pandas as pd
276
+ df = pd.DataFrame(table_data, columns=headers)
277
+ import pandas as pd
278
+ from pandasai.llm.openai import OpenAI
279
+ from pandasai import SmartDataframe
280
+ #open api key
281
+ import openai
282
+
283
+ llm = OpenAI()
284
+ sdf = SmartDataframe(df, config={"llm": llm})
285
+ #chart = sdf.chat("Can you draw a bar chart with all avaialble item name and quantity.")
286
+ chart = sdf.chat(question)
287
+ return chart
288
+ #inventory_report("WH:can you give me a bar chart with item name and quantity for the warehouse WH")
289
+
290
+ # Define input and output models using Pydantic
291
+ class QueryInput(BaseModel):
292
+ question: str = Field(description="The question to be answered by appropriate tool. Please follow the instructions. For API tool, do not send the question as it is. Please send the ASN id. Invoke datavisulaization tool by processing the user question and send two inputs to the tool. One input will be the warehouse name and another input to the tool will be the entire user_question itself. Please join those two strings and send them as a single input string with ':' as delimiter")
293
+ # config: dict = Field(default={}, description="Optional configuration for the database query.")
294
+
295
+
296
+ # Define the output model for database queries
297
+ class QueryOutput(BaseModel):
298
+ result: str = Field(..., description="Display the answer based on the prompts given in each tool. For dataVisualization tool, it sends a image file as output. Please give the image file path only to the gr.Image. For DocumentData tool, Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points.")
299
+
300
+ # Wrap the function with StructuredTool for better parameter handling
301
+ tools = [
302
+ StructuredTool(
303
+ func=get_ASN_data,
304
+ name="APIData",
305
+ args_schema=QueryInput,
306
+ output_schema=QueryOutput,
307
+ description="Tool to get details of ASN api. ASN id will be in the input with the format of first three letters as ASN and it is followed by 11 digit numeral. Pass only the id as input. Do not send the complete user question to the tool. If there are any other queries related to ASN without ASN id, please use the document tool."
308
+ ),
309
+ StructuredTool(
310
+ func=document_data_tool,
311
+ name="DocumentData",
312
+ args_schema=QueryInput,
313
+ output_schema=QueryOutput,
314
+ description="You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. "
315
+ ),
316
+ StructuredTool(
317
+ func=database_tool,
318
+ name="DatabaseQuery",
319
+ args_schema=QueryInput,
320
+ output_schema=QueryOutput,
321
+ description="Tool to query the database based on structured input."
322
+ ),
323
+ StructuredTool(
324
+ func=inventory_report,
325
+ name="dataVisualization",
326
+ args_schema=QueryInput,
327
+ output_schema=QueryOutput,
328
+ description="Tool to generate visual output for a particular warehouse. Invoke this tool if the user wants to create charts. Process the user question and send two inputs to the tool. One input will be the warehouse name and another input to the tool will be the entire user_question itself. "
329
+ )
330
+ ]
331
+
332
+ prompt_template = f"""You are an assistant that helps with database queries, API information, and document retrieval. Your job is to provide clear, complete, and detailed responses to the following queries. Please give the output response in an user friendly way and remove "**" from the response. For example, document related queries can be answered in a clear and concise way with numbering and not as a paragraph. Database related queries should be answered with proper indentation and use numbering for the rows. ASN id related queries should be answered with proper indentation and use numbering for the rows.
333
+ For ASN id related questions, if the user specifies an ASN id, provide the information from the api tool. Pass only the id as input to the tool. Do not pass the entire question as input to the tool. If the details are not found, say it in a clear and concise way.
334
+ You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. When answering, focus on providing actionable insights and clear explanations related to the specific query. Please remove "**" from the response.
335
+ For SQL database-related questions, only use the fields available in the warehouse schema, including tables such as customer_master, efs_company_master, efs_group_company_master, efs_region_master, party_address_detail, wms_warehouse_master.
336
+ For datavisualization, user will ask for inventory report of a particular warehouse. Your job is to return the image path to chat interface and display the image as output.
337
+ {{agent_scratchpad}}
338
+ Here is the information you need to process:
339
+ Question: {{input}}"""
340
+
341
+ llm = llm.bind()
342
+ agent = create_tool_calling_agent(llm, tools, ChatPromptTemplate.from_template(prompt_template))
343
+ agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
344
+
345
+ # Define the interface function
346
+ max_iterations = 5
347
+ iterations = 0
348
+
349
+ def answer_question(user_question,chatbot):
350
+ global iterations
351
+ iterations = 0
352
+
353
+ while iterations < max_iterations:
354
+ #print(user_question)
355
+ response = agent_executor.invoke({"input": user_question})
356
+ #print(response)
357
+ if isinstance(response, dict):
358
+ response_text = response.get("output", "")
359
+ else:
360
+ response_text = response
361
+ if "invalid" not in response_text.lower():
362
+ break
363
+ iterations += 1
364
+
365
+ if iterations == max_iterations:
366
+ return "The agent could not generate a valid response within the iteration limit."
367
+ if "chart" in user_question:
368
+
369
+ # Open the image file
370
+ img = Image.open('/home/user/app/exports/charts/temp_chart.png')
371
+
372
+ # Convert the PIL Image to a base64 encoded string
373
+ buffered = BytesIO()
374
+ img.save(buffered, format="PNG")
375
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
376
+ #print(img_str)
377
+ img = f'<img src="data:image/png;base64,{img_str}">'
378
+ #image = gr.Image(value=img_str)
379
+ chatbot.append((user_question,img))
380
+ #print(chatbot)
381
+ return gr.update(value=chatbot)
382
+
383
+ #return [(user_question,gr.Image("/home/user/app/exports/charts/temp_chart.png"))]
384
+ # return "/home/user/app/exports/charts/temp_chart.png"
385
+ else:
386
+ chatbot.append((user_question, response_text))
387
+ #print(chatbot)
388
+ return gr.update(value=chatbot)
389
+ #response_text = response_text.replace('\n', ' ').replace(' ', ' ').strip()
390
+ #return response_text
391
+
392
+ import gradio as gr
393
+
394
+ css = """
395
+
396
+ .gr-chatbot {
397
+ /* Custom styles for the Chatbot component */
398
+ border: 1px solid #ccc;
399
+ border-radius: 10px;
400
+ padding: 10px;
401
+ background-color: #f9f9f9;
402
+ height: 300px; /* Adjust the height as needed */
403
+ /* Adjust the width as needed */
404
+ overflow-y: auto; /* Add scroll if the content exceeds the height */
405
+ }
406
+
407
+
408
+ .gr-button {
409
+ height: 40px; /* Adjust the height as needed */
410
+
411
+ """
412
+
413
+ def submit_feedback(feedback, chatbot):
414
+ feedback_response = "User feedback: " + feedback
415
+ return chatbot + [(feedback_response,None)], gr.update(visible=False), gr.update(visible=False)
416
+
417
+ def handle_dislike(data: gr.LikeData):
418
+ if not data.liked:
419
+ print("downvote")
420
+ return gr.update(visible=True), gr.update(visible=True)
421
+ else:
422
+ print("upvote")
423
+ return gr.update(visible=False), gr.update(visible=False)
424
+
425
+
426
+
427
+
428
+ with gr.Blocks(css=css) as demo:
429
+ gr.Markdown("<CENTER><h2 style='font-size: 20px; font-family: Calibri;'>NewageNXT GPT</h2></CENTER>")
430
+ chatbot = gr.Chatbot(elem_classes="gr-chatbot", label="Ask a question about the API, Database, a Document or Warehouse inventory analysis.")#.style(color_map=["blue","grey","red"])
431
+
432
+ with gr.Row():
433
+ with gr.Column(scale=1):
434
+ message = gr.Textbox(show_label=False)
435
+ with gr.Column(scale=1):
436
+ with gr.Row():
437
+ button = gr.Button("Submit", elem_classes="gr-button")
438
+ gr.ClearButton(message, elem_classes="gr-button")
439
+ with gr.Row():
440
+ with gr.Column(scale=1):
441
+ feedback_textbox = gr.Textbox(visible=False, show_label=False)
442
+ with gr.Column(scale=1):
443
+ submit_feedback_button = gr.Button("Submit Feedback", visible=False, elem_classes="gr-button")
444
+
445
+
446
+ button.click(answer_question, [message, chatbot], [chatbot])
447
+ message.submit(answer_question, [message, chatbot], [chatbot])
448
+ message.submit(lambda x: gr.update(value=""), None, [message], queue=False)
449
+ button.click(lambda x: gr.update(value=''), [], [message])
450
+
451
+
452
+
453
+ chatbot.like(handle_dislike,None, outputs=[feedback_textbox, submit_feedback_button])
454
+ submit_feedback_button.click(submit_feedback, [feedback_textbox, chatbot], [chatbot, feedback_textbox,submit_feedback_button])
455
+ submit_feedback_button.click(lambda x: gr.update(value=''), [], [feedback_textbox])
456
+
457
+
458
+
459
+
460
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ langchain
3
+ mysql-connector-python
4
+ langchain-community
5
+ langchain-openai
6
+ requests
7
+ gradio
8
+ PyPDF2
9
+ faiss-cpu
10
+ psycopg2
11
+ nltk
12
+ tabulate
13
+ pandas
14
+ numpy
15
+ pandasai