Spaces:
Runtime error
Runtime error
File size: 38,554 Bytes
e4950ac f08b1e6 e4950ac f08b1e6 40931da d08917a 40931da f08b1e6 40931da d08917a 40931da f08b1e6 40931da d08917a e4950ac d08917a e4950ac f08b1e6 d08917a f08b1e6 d08917a f08b1e6 d08917a f08b1e6 d08917a f08b1e6 40931da f9884d7 a399790 40931da 47c982e 40931da a399790 40931da a399790 40931da 0fe444f 47c982e d08917a f08b1e6 e4950ac b3efd6f e4950ac 0894bc7 d08917a f08b1e6 d08917a e4950ac 40931da 38c665d d08917a 40931da d08917a ab369bd d08917a ab369bd d08917a e4950ac d08917a f08b1e6 e4950ac d08917a e4950ac d08917a e4950ac d08917a e4950ac d08917a e4950ac f08b1e6 e4950ac d08917a e4950ac d08917a e4950ac d08917a e4950ac d08917a e4950ac d08917a e4950ac d08917a e4950ac f08b1e6 e4950ac d08917a e4950ac f08b1e6 d08917a e4950ac d08917a e4950ac f08b1e6 e4950ac d08917a e4950ac d08917a 40931da 1e4fe02 40931da c25aacb c7a1e0f f9884d7 c25aacb f9884d7 40931da c25aacb 40931da c25aacb d08917a c25aacb 4aa81c4 a6a2185 84e9804 a6a2185 f9884d7 a6a2185 f9884d7 a6a2185 f9884d7 a6a2185 f9884d7 a6a2185 f9884d7 a6a2185 8f7f566 f9884d7 f7f6c3a a6a2185 359d52b f9884d7 b2c97f3 8f7f566 f9884d7 d08917a e4950ac d08917a 8eb7f15 522e074 d08917a e4950ac d08917a 48800dc d08917a b2c97f3 9d3ec0f d08917a e4950ac d08917a e4950ac d08917a e4950ac d08917a e4950ac d08917a f08b1e6 d08917a f08b1e6 e4950ac d08917a f08b1e6 d08917a f08b1e6 d08917a f08b1e6 d08917a f08b1e6 d08917a e4950ac 40931da a399790 f9884d7 a399790 40931da d08917a 40931da a399790 40931da dfef078 bbf123a a399790 40931da bd21414 40931da bd21414 40931da 03bf030 bd21414 40931da 03bf030 bd21414 a399790 40931da 9b7d284 b654e9e a399790 85e2306 bbf123a 47c982e a399790 1a022d8 47c982e a399790 47c982e 40931da a399790 40931da 28a8111 9205517 47c982e f9884d7 b654e9e 40931da b654e9e 40931da b654e9e 67e57d4 7ccc248 b654e9e 0ddd34e b654e9e 40931da 919e661 b654e9e 4c2c953 b654e9e 40931da b654e9e 40931da b654e9e a399790 40931da b654e9e a399790 e4950ac f08b1e6 d08917a f08b1e6 d08917a f08b1e6 e4950ac 2d2aa0c 3aa8a93 2d2aa0c fd00d33 3aa8a93 ac16f4c 2d2aa0c 3aa8a93 2d2aa0c d08917a 2d2aa0c d08917a e4950ac d08917a 2d2aa0c e4950ac 2d2aa0c f68e394 d08917a 2d2aa0c 529bb03 2d2aa0c d15bbb3 c25aacb d15bbb3 72764b9 d15bbb3 c25aacb 28fd854 c25aacb d08917a bf1b1ca 72f3118 d08917a ee37af5 72f3118 f08b1e6 e4950ac d08917a e4950ac d08917a 3ea20cf e4950ac d08917a e4950ac 35c9cbd e4950ac d08917a e4950ac 40931da f6fd3d2 696f0ae 651bb1a 64151be 1e4fe02 47c982e 83af1fb f45d85e 83af1fb 314075d 83af1fb a240314 0bac7f1 651bb1a f87e2cf 651bb1a 7a8980b be62ab6 7a8980b f87e2cf 7a8980b 83af1fb 651bb1a 83af1fb 651bb1a a1957af d207765 3b0ddd1 83af1fb 651bb1a d0ce3b6 b9cafb8 83af1fb aa04435 90bb409 e9396a5 90bb409 d08917a a391b10 7a8980b 167d13b 12b3089 d08917a acdf5c3 d08917a e4950ac ae63ea7 d08917a 83af1fb 7a8980b ae63ea7 2a0111a 7a8980b a399790 7a8980b f9884d7 e4950ac f9884d7 e4950ac d08917a 83af1fb e4950ac a399790 f9884d7 f08b1e6 dbd5ba6 31dfbb3 40931da 9eb64d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
from PIL import Image
import base64
from io import BytesIO
import os
import re
import tempfile
import wave
import requests
import gradio as gr
import time
import shutil
import json
import nltk
#commenting audio related code based on Arun's input
# audio package
"""import speech_recognition as sr
from pydub import AudioSegment
from pydub.playback import play"""
# Commenting SMTP code since HFSpaces doesn't support it
# email library
"""import smtplib, ssl
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders"""
# langchain
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableSequence, RunnableLambda
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.utilities import SQLDatabase
from langchain.agents import create_tool_calling_agent, AgentExecutor, Tool
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.tools import StructuredTool
from langchain.pydantic_v1 import BaseModel, Field
from PyPDF2 import PdfReader
from nltk.tokenize import sent_tokenize
from datetime import datetime
from sqlalchemy import create_engine
from sqlalchemy.sql import text
# pandas
import pandas as pd
from pandasai.llm.openai import OpenAI
from pandasai import SmartDataframe
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# langfuse analytics
from langfuse.callback import CallbackHandler
# Inventory API data table
from tabulate import tabulate
#forcefully stop the agent execution
import concurrent.futures
import threading
# mailjet_rest to send email
from mailjet_rest import Client
import base64
# Define global variables for managing the thread and current_event
executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
current_event = None
stop_event = threading.Event()
# LangFuse API keys and host settings
os.environ["LANGFUSE_PUBLIC_KEY"] = os.getenv("LANGFUSE_PUBLIC_KEY")
os.environ["LANGFUSE_SECRET_KEY"] = os.getenv("LANGFUSE_SECRET_KEY")
os.environ["LANGFUSE_HOST"] = os.getenv("LANGFUSE_HOST")
langfuse_handler = CallbackHandler()
langfuse_handler.auth_check() # Optional: Checks if the authentication is successful
nltk.download('punkt')
open_api_key_token = os.getenv("OPEN_AI_API")
os.environ['OPENAI_API_KEY'] = open_api_key_token
pdf_path = "Inbound.pdf"
db_uri = os.getenv("POSTGRESQL_CONNECTION")
# Database setup
db = SQLDatabase.from_uri(db_uri)
user_email = ""
warehouse_name = ""
warehouse_id = ""
# Today's date to be populated in inventory API
inventory_date = datetime.today().strftime('%Y-%m-%d')
apis = [
# fetch warehouse ID
{
"url": "http://193.203.162.39:8383/nxt-wms/userWarehouse/fetchWarehouseForUserId?",
"params": {"query": warehouse_name, "userId": 164}
},
# Stock summary based on warehouse id
{
"url": "http://193.203.162.39:8383/nxt-wms/transactionHistory/stockSummary?",
"params": {"branchId": 343, "onDate": inventory_date, "warehouseId": warehouse_id}
}
]
# LLM setup
llm = ChatOpenAI(model="gpt-4o-mini", max_tokens=300, temperature=0.1)
llm_chart = OpenAI()
def get_schema(_):
schema_info = db.get_table_info() # This should be a string of your SQL schema
return schema_info
def generate_sql_query(question):
schema = get_schema(None)
template_query_generation = """
Schema: {schema}
Question: {question}
Provide a SQL query to answer the above question using the exact field names and table names specified in the schema.
SQL Query (Please provide only the SQL statement without explanations or formatting):
"""
prompt_query_generation = ChatPromptTemplate.from_template(template_query_generation)
schema_and_question = RunnableLambda(lambda _: {'schema': schema, 'question': question})
sql_chain = RunnableSequence(
schema_and_question,
prompt_query_generation,
llm.bind(stop=["SQL Query End"]), # Adjust the stop sequence to your need
StrOutputParser()
)
sql_query = sql_chain.invoke({})
sql_query = sql_chain.invoke({}, config={"callbacks": [langfuse_handler]})
return sql_query.strip()
def run_query(query):
# Clean the query by removing markdown symbols and trimming whitespace
clean_query = query.replace("```sql", "").replace("```", "").strip()
print(f"Executing SQL Query: {clean_query}")
try:
result = db.run(clean_query)
return result
except Exception as e:
print(f"Error executing query: {e}")
return None
# Define the database query tool
# The function that uses the above models
# Define the function that will handle the database query
def database_tool(question):
sql_query = generate_sql_query(question)
return run_query(sql_query)
def get_ASN_data(question):
base_url = os.getenv("ASN_API_URL")
complete_url = f"{base_url}branchMaster.id=343&transactionUid={question}&userId=164&transactionType=ASN"
try:
response = requests.get(complete_url)
data = response.json()
response.raise_for_status()
if 'result' in data and 'content' in data['result'] and data['result']['content']:
content = data['result']['content'][0]
trnHeaderAsn = content['trnHeaderAsn']
party = content['party'][0]
transactionUid = trnHeaderAsn['transactionUid']
customerOrderNo = trnHeaderAsn.get('customerOrderNo', 'N/A')
orderDate = trnHeaderAsn.get('orderDate', 'N/A')
customerInvoiceNo = trnHeaderAsn.get('customerInvoiceNo', 'N/A')
invoiceDate = trnHeaderAsn.get('invoiceDate', 'N/A')
expectedReceivingDate = trnHeaderAsn['expectedReceivingDate']
transactionStatus = trnHeaderAsn['transactionStatus']
shipper_code = party['shipper']['code'] if party['shipper'] else 'N/A'
shipper_name = party['shipper']['name'] if party['shipper'] else 'N/A'
data = [
["Transaction UID", transactionUid],
["Customer Order No", customerOrderNo],
["Order Date", orderDate],
["Customer Invoice No", customerInvoiceNo],
["Invoice Date", invoiceDate],
["Expected Receiving Date", expectedReceivingDate],
["Transaction Status", transactionStatus],
["Shipper Code", shipper_code],
["Shipper Name", shipper_name]
]
return f"The ASN details of {question} is {data}."
else:
return "ASN Details are not found. Please contact system administrator."
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
except Exception as err:
print(f"An error occurred: {err}")
def load_and_split_pdf(pdf_path):
reader = PdfReader(pdf_path)
text = ''
for page in reader.pages:
text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
texts = text_splitter.split_text(text)
return texts
def create_vector_store(texts):
embeddings = OpenAIEmbeddings()
vector_store = FAISS.from_texts(texts, embeddings)
return vector_store
def query_vector_store(vector_store, query, config=None):
if config:
print("Config passed:", config)
docs = vector_store.similarity_search(query, k=5)
print(f"Vector store return: {docs}")
return docs
def summarize_document(docs):
summarized_docs = []
for doc in docs:
if isinstance(doc, list):
doc_content = ' '.join([d.page_content for d in doc])
else:
doc_content = doc.page_content
sentences = sent_tokenize(doc_content)
if len(sentences) > 5:
summarized_content = ' '.join(sentences[:5])
else:
summarized_content = doc_content
summarized_docs.append(summarized_content)
return '\n\n'.join(summarized_docs)
texts = load_and_split_pdf(pdf_path)
vector_store = create_vector_store(texts)
def document_data_tool(question):
print(f"Document data tool enter: {question}")
# query_string = question['tags'][0] if 'tags' in question and question['tags'] else ""
query_response = query_vector_store(vector_store, question, config={"callbacks": [langfuse_handler]})
# summarized_response = summarize_document(query_response)
return query_response
# mailjet API since SMTP is not supported HF spaces
def send_email_with_attachment_mailjet(recipient_email, subject, body, attach_img_base64=None):
api_key = os.getenv("MAILJET_API_KEY")
api_secret = os.getenv("MAILJET_API_SECRET")
# Initialize the Mailjet client
mailjet = Client(auth=(api_key, api_secret), version='v3.1')
# Define the email details with an attachment
data = {
'Messages': [
{
"From": {
"Email": "lakshmi.vairamani@redmindtechnologies.com",
"Name": "Redmind Technologies"
},
"To": [
{
"Email": recipient_email,
"Name": ""
}
],
"Subject": subject,
"TextPart": body,
"CustomID": "AppGettingStartedTest",
"Attachments": [
{
"ContentType": "image/png", # Replace with the correct MIME type of your image
"Filename": "inventory_report.png", # Name of the image as it will appear in the email
"Base64Content": attach_img_base64 # Base64-encoded image content
}
]
}
]
}
# Send the email
result = mailjet.send.create(data=data)
# Check if the email was sent successfully
if result.status_code == 200:
print("Email sent successfully with attachment!")
else:
print(f"Failed to send email. Status code: {result.status_code}")
print(result.json())
#smtp lib
def send_email_with_attachment(recipient_email, subject, body, attachment_path):
try:
sender_email = os.getenv("EMAIL_SENDER")
sender_password = os.getenv("EMAIL_PASSWORD")
# Create a multipart message
msg = MIMEMultipart()
msg['From'] = sender_email
msg['To'] = recipient_email
msg['Subject'] = subject
# Attach the body with the msg instance
msg.attach(MIMEText(body, 'plain'))
# Open the file to be sent
attachment = open(attachment_path, "rb")
# print("Attached the image")
# Instance of MIMEBase and named as p
part = MIMEBase('application', 'octet-stream')
# To change the payload into encoded form
part.set_payload((attachment).read())
# Encode into base64
encoders.encode_base64(part)
part.add_header('Content-Disposition', f"attachment; filename= {attachment_path}")
# Attach the instance 'part' to instance 'msg'
msg.attach(part)
server = smtplib.SMTP('smtp.gmail.com', 587)
server.starttls()
server.login(sender_email, sender_password)
text = msg.as_string()
server.sendmail(sender_email, recipient_email, text)
server.quit()
except Exception as error:
print(f"An error occurred: {error}")
# return 1
def make_api_request(url, params):
"""Generic function to make API GET requests and return JSON data."""
try:
print(url)
print(params)
response = requests.get(url, params=params)
response.raise_for_status() # Raises an HTTPError if the response was an error
return response.json() # Return the parsed JSON data
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
except Exception as err:
print(f"An error occurred: {err}")
def inventory_report(question):
# Split the question to extract warehouse name, user question, and optional email
if question.count(":") > 0:
parts = question.split(":", 2)
warehouse_name= parts[0].strip()
user_question = parts[1].strip()
user_email = parts[2].strip() if len(parts) > 2 else None
print(f"Warehouse: {warehouse_name}, Email: {user_email}, Question: {user_question}")
else:
return "warehouse name not found"
data = make_api_request(apis[0]["url"], apis[0]["params"])
print(data)
if data:
# Extracting the id for the warehouse with the name "WH"
warehouse_id = next((item['id'] for item in data['result'] if item['name'] == warehouse_name), None)
#print(warehouse_id)
if (warehouse_id):
# print(f"The id for the warehouse named {name} is: {warehouse_id}")
# Step 3: Update the placeholder with the actual warehouse_id
for api in apis:
if "warehouseId" in api["params"]:
api["params"]["warehouseId"] = warehouse_id
print(f"warehouseId: {warehouse_id}")
print(f"warehouseId: {apis[1]}")
data1 = make_api_request(apis[1]["url"], apis[1]["params"])
if (data1):
headers = ["S.No", "Warehouse Code", "Warehouse Name", "Customer Code", "Customer Name", "Item Code", "Item Name",
"Currency", "EAN", "UOM", "Quantity", "Gross Weight", "Volume", "Total Value"]
table_data = []
for index, item in enumerate(data1['result'], start=1):
row = [
index, # Serial number
item['warehouse']['code'],
item['warehouse']['name'],
item['customer']['code'],
item['customer']['name'],
item['skuMaster']['code'],
item['skuMaster']['name'],
item['currency']['code'],
item['eanUpc'],
item['uom']['code'],
item['totalQty'],
item['grossWeight'],
item['volume'],
item['totalValue']
]
table_data.append(row)
# Convert to pandas DataFrame
df = pd.DataFrame(table_data, columns=headers)
sdf = SmartDataframe(df, config={"llm": llm_chart})
# chart = sdf.chat("Can you draw a bar chart with all avaialble item name and quantity.")
chart = sdf.chat(question)
return chart
else:
return "There are no inventory details for the warehouse you have given."
else:
return "Please provide a warehouse name available in the database."
# inventory_report("WH:can you give me a bar chart with item name and quantity for the warehouse WH")
# Define input and output models using Pydantic
class QueryInput(BaseModel):
question: str = Field(
description="The question to be answered by appropriate tool. Please follow the instructions. For API tool, do not send the question as it is. Please send the ASN id.")# Invoke datavisulaization tool by processing the user question and send two inputs to the tool. One input will be the warehouse name and another input to the tool will be the entire user_question itself. Please join those two strings and send them as a single input string with ':' as delimiter")
# config: dict = Field(default={}, description="Optional configuration for the database query.")
# Define the output model for database queries
class QueryOutput(BaseModel):
result: str = Field(...,
description="Display the answer based on the prompts given in each tool. For dataVisualization tool, it sends a image file as output. Please give the image file path only to the gr.Image. For DocumentData tool, Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points.")
# Wrap the function with StructuredTool for better parameter handling
tools = [
StructuredTool(
func=get_ASN_data,
name="APIData",
args_schema=QueryInput,
output_schema=QueryOutput,
description="Tool to get details of ASN api. ASN id will be in the input with the format of first three letters as ASN and it is followed by 11 digit numeral. Pass only the id as input. Do not send the complete user question to the tool. If there are any other queries related to ASN without ASN id, please use the document tool."
),
StructuredTool(
func=document_data_tool,
name="DocumentData",
args_schema=QueryInput,
output_schema=QueryOutput,
description="You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. "
),
StructuredTool(
func=database_tool,
name="DatabaseQuery",
args_schema=QueryInput,
output_schema=QueryOutput,
description="Tool to query the database based on structured input."
),
StructuredTool(
func=inventory_report,
name="dataVisualization",
args_schema=QueryInput,
output_schema=QueryOutput,
description=""" Tool to generate a visual chart output for a particular warehouse based on the provided question.
This tool processes the user question to identify the warehouse name and the specific request. If the user specifies
an email, include the email in the input. The input format should be: 'warehouse name: user question: email (if any)'.
The tool generates the requested chart and sends it to the provided email if specified.
Examples:
1. Question without email, without warehouse: "Analyze item name and quantity in a bar chart in warehouse"
Input to tool: "I want to analyze item name and quantity in a bar chart"
2. Question with email: "Analyze item name and quantity in a bar chart in warehouse Allcargo Logistics and send email to example@example.com"
Input to tool: "Allcargo Logistics: I want to analyze item name and quantity in a bar chart: example@example.com"
"""
)
]
prompt_template = f"""You are an assistant that helps with database queries, API information, and document retrieval. Your job is to provide clear, complete, and detailed responses to the following queries. Please give the output response in an user friendly way and remove "**" from the response. For example, document related queries can be answered in a clear and concise way with numbering and not as a paragraph. Database related queries should be answered with proper indentation and use numbering for the rows. ASN id related queries should be answered with proper indentation and use numbering for the rows.
For ASN id related questions, if the user specifies an ASN id, provide the information from the api tool. Pass only the id as input to the tool. Do not pass the entire question as input to the tool. If the details are not found, say it in a clear and concise way.
You are an AI assistant trained to help with warehouse management questions based on a detailed document about our WMS. The document covers various processes such as ASN handling, purchase orders, cross docking, appointment scheduling for shipments, and yard management. Please provide a complete and concise response within 200 words and Ensure that the response is not truncated and covers the essential points. When answering, focus on providing actionable insights and clear explanations related to the specific query. Please remove "**" from the response.
For SQL database-related questions, only use the fields available in the warehouse schema, including tables such as customer_master, efs_company_master, efs_group_company_master, efs_region_master, party_address_detail, wms_warehouse_master.
For datavisualization, user will ask for inventory report of a particular warehouse. Your job is to return the image path to chat interface and display the image as output.
{{agent_scratchpad}}
Here is the information you need to process:
Question: {{input}}"""
llm = llm.bind()
agent = create_tool_calling_agent(llm, tools, ChatPromptTemplate.from_template(prompt_template))
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
def ensure_temp_chart_dir():
temp_chart_dir = os.getenv("IMAGE_MAIN_URL")
if not os.path.exists(temp_chart_dir):
os.makedirs(temp_chart_dir)
def clean_gradio_tmp_dir():
tmp_dir = os.getenv("IMAGE_GRADIO_PATH")
if os.path.exists(tmp_dir):
try:
shutil.rmtree(tmp_dir)
except Exception as e:
print(f"Error cleaning up /tmp/gradio/ directory: {e}")
# Define the interface function
max_iterations = 5
iterations = 0
def handle_query(user_question, chatbot, audio=None):
"""
Function to handle the processing of user input with `AgentExecutor.invoke()`.
"""
global current_event, stop_event
# Clear previous stop event and current_event
stop_event.clear()
#if current_event and not current_event.done():
# chatbot.append(("","A query is already being processed. Please stop it before starting a new one."))
# return gr.update(value=chatbot)
# Start the processing in a new thread
current_event = executor.submit(answer_question_thread, user_question, chatbot)
# Periodically check if current_event is done
while not current_event.done():
if stop_event.is_set():
current_event.cancel()
chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time."))
return gr.update(value=chatbot)
time.sleep(1) # Wait for 1 second before checking again
if current_event.cancelled():
chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time."))
return gr.update(value=chatbot)
else:
try:
user_question1, response_text1 = current_event.result() # Get the result of the completed current_event
print("output")
print(user_question1)
print(response_text1)
chatbot.append((user_question1, response_text1))
return gr.update(value=chatbot)
except Exception as e:
print(f"Error occurred: {e}")
chatbot.append((user_question, "Sorry, we encountered an error while processing your request. Please try after some time."))
return gr.update(value=chatbot)
def stop_processing(chatbot):
"""
Stops the current processing if it's running.
"""
global current_event, stop_event
if current_event and not current_event.done():
stop_event.set() # Signal the process to stop
current_event.cancel() # Attempt to cancel the current_event
chatbot.append(("Sorry, we encountered an error while processing your request. Please try after some time.",""))
return gr.update(value=chatbot)
# This function is for agent executor invoke with the option of stop
def answer_question_thread(user_question, chatbot, audio=None):
global iterations
iterations = 0
# Ensure the temporary chart directory exists
# ensure_temp_chart_dir()
# Clean the /tmp/gradio/ directory
# clean_gradio_tmp_dir()
# Handle audio input if provided
"""
if audio is not None:
sample_rate, audio_data = audio
audio_segment = AudioSegment(
audio_data.tobytes(),
frame_rate=sample_rate,
sample_width=audio_data.dtype.itemsize,
channels=1
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
audio_segment.export(temp_audio_file.name, format="wav")
temp_audio_file_path = temp_audio_file.name
recognizer = sr.Recognizer()
with sr.AudioFile(temp_audio_file_path) as source:
audio_content = recognizer.record(source)
try:
user_question = recognizer.recognize_google(audio_content)
except sr.UnknownValueError:
user_question = "Sorry, I could not understand the audio."
except sr.RequestError:
user_question = "Could not request results from Google Speech Recognition service."
"""
while iterations < max_iterations:
"""if "send email to" in user_question:
email_match = re.search(r"send email to ([\w\.-]+@[\w\.-]+)", user_question)
if email_match:
user_email = email_match.group(1).strip()
user_question = user_question.replace(f"send email to {user_email}", "").strip()
user_question = f"{user_question}:{user_email}"
"""
response = agent_executor.invoke({"input": user_question}, config={"callbacks": [langfuse_handler]}, early_stopping_method="generate")
print("response generated")
print(response)
if isinstance(response, dict):
response_text = response.get("output", "")
else:
response_text = response
if "invalid" not in response_text.lower():
break
iterations += 1
if iterations == max_iterations:
return user_question , "Sorry, I couldn't complete your request" #"The agent could not generate a valid response within the iteration limit."
if os.getenv("IMAGE_PATH") in response_text:
# Open the image file
img = Image.open(os.getenv("IMAGE_PATH"))
# Convert the PIL Image to a base64 encoded string
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
img = f'<img src="data:image/png;base64,{img_str}" style="width:450px; height:400px;">'
response_text = response.get("output", "").split(".")[0] + img
email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
match = re.search(email_pattern, user_question)
if match:
user_email = match.group() # Return the matched email
# email send
if len(user_email) > 0:
# Send email with the chart image attached
send_email_with_attachment_mailjet(
recipient_email=user_email,
subject="Warehouse Inventory Report",
body=response.get("output", "").split(".")[0] + ". This is an auto-generated email containing a chart created using Generative AI.",
# attachment_path=chart_path
attach_img_base64=img_str)
if "send email to" in user_question:
try:
os.remove(img) # Clean up the temporary image file
except Exception as e:
print(f"Error cleaning up image file: {e}")
except Exception as e:
print(f"Error loading image file: {e}")
response_text = "Chart generation failed. Please try again."
return user_question, response_text
else:
return user_question, response_text
# response_text = response_text.replace('\n', ' ').replace(' ', ' ').strip()
# return response_text
# without forceful stop option
def answer_question(user_question, chatbot, audio=None):
global iterations
iterations = 0
# Ensure the temporary chart directory exists
# ensure_temp_chart_dir()
# Clean the /tmp/gradio/ directory
# clean_gradio_tmp_dir()
# Handle audio input if provided
if audio is not None:
sample_rate, audio_data = audio
audio_segment = AudioSegment(
audio_data.tobytes(),
frame_rate=sample_rate,
sample_width=audio_data.dtype.itemsize,
channels=1
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
audio_segment.export(temp_audio_file.name, format="wav")
temp_audio_file_path = temp_audio_file.name
recognizer = sr.Recognizer()
with sr.AudioFile(temp_audio_file_path) as source:
audio_content = recognizer.record(source)
try:
user_question = recognizer.recognize_google(audio_content)
except sr.UnknownValueError:
user_question = "Sorry, I could not understand the audio."
except sr.RequestError:
user_question = "Could not request results from Google Speech Recognition service."
while iterations < max_iterations:
"""if "send email to" in user_question:
email_match = re.search(r"send email to ([\w\.-]+@[\w\.-]+)", user_question)
if email_match:
user_email = email_match.group(1).strip()
user_question = user_question.replace(f"send email to {user_email}", "").strip()
user_question = f"{user_question}:{user_email}"
"""
response = agent_executor.invoke({"input": user_question}, config={"callbacks": [langfuse_handler]})
if isinstance(response, dict):
response_text = response.get("output", "")
else:
response_text = response
if "invalid" not in response_text.lower():
break
iterations += 1
if iterations == max_iterations:
return "The agent could not generate a valid response within the iteration limit."
if os.getenv("IMAGE_PATH") in response_text:
# Open the image file
img = Image.open(os.getenv("IMAGE_PATH"))
# Convert the PIL Image to a base64 encoded string
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
img = f'<img src="data:image/png;base64,{img_str}" style="width:450px; height:400px;">'
# image = gr.Image(value=img_str)
chatbot.append((user_question, img))
email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
match = re.search(email_pattern, user_question)
if match:
user_email = match.group() # Return the matched email
# email send
if len(user_email) > 0:
# Send email with the chart image attached
send_email_with_attachment_mailjet(
recipient_email=user_email,
subject="Warehouse Inventory Report",
body=response.get("output", "").split(".")[0],
# attachment_path=chart_path
attachment_path=img_str)
# Send email with the chart image attached
"""send_email_with_attachment(
recipient_email=user_email,
subject="Warehouse Inventory Report",
body=response.get("output", "").split(":")[0],
# attachment_path=chart_path
attachment_path=os.getenv("IMAGE_PATH")
)"""
if "send email to" in user_question:
try:
os.remove(img) # Clean up the temporary image file
except Exception as e:
print(f"Error cleaning up image file: {e}")
except Exception as e:
print(f"Error loading image file: {e}")
chatbot.append((user_question, "Chart generation failed. Please try again."))
return gr.update(value=chatbot)
# return [(user_question,gr.Image("/home/user/app/exports/charts/temp_chart.png"))]
# return "/home/user/app/exports/charts/temp_chart.png"
else:
chatbot.append((user_question, response_text))
return gr.update(value=chatbot)
# response_text = response_text.replace('\n', ' ').replace(' ', ' ').strip()
# return response_text
def submit_feedback(feedback, chatbot):
gr.Info("Thank you for your feedback.")
feedback_response = "User feedback: " + feedback
return chatbot + [(feedback_response, None)], gr.update(visible=False), gr.update(visible=False)
def handle_dislike(data: gr.LikeData):
if not data.liked:
print("downvote")
gr.Info("Please enter your feedback.")
return gr.update(visible=True), gr.update(visible=True)
else:
print("upvote")
return gr.update(visible=False), gr.update(visible=False)
# greet with user name on successful login
def update_message(request: gr.Request):
return f"<h2 style=' font-family: Calibri;'>Welcome, {request.username}</h4>"
def send_mail_with_history(req: gr.Request,chatbot):
if req.username:
send_email_with_attachment_mailjet("lakshmivairamani@gmail.com","conversation history" + req.username, chatbot)
# CSS for styling the buttons and other elements
css = """
/* Example of custom button styling */
.gr-button {
background-color: #6366f1; /* Change to your desired button color */
color: white;
border-radius: 8px; /* Make the corners rounded */
border: none;
padding: 10px 20px;
font-size: 12px;
cursor: pointer;
user-select: text;
cursor: text;
}
.gr-button:hover {
background-color: #8a92f7; /* Darker shade on hover */
}
.gr-buttonbig {
background-color: #6366f1; /* Change to your desired button color */
color: white;
border-radius: 8px; /* Make the corners rounded */
border: none;
padding: 10px 20px;
font-size: 14px;
cursor: pointer;
user-select: text;
cursor: text;
}
.gr-buttonbig:hover {
background-color: #8a92f7; /* Darker shade on hover */
}
/* Customizing the Logout link to be on the right */
.logout-link {
text-align: right;
display: inline-block;
width: 100%;
}
.logout-link a {
color: #4A90E2; /* Link color */
text-decoration: none;
font-size: 16px;
}
.chatbot_gpt {
/* width: 800px !important; Adjust width as needed */
height: 600px !important; /* Adjust height as needed */
}
.logout-link a:hover {
text-decoration: underline; /* Underline on hover */
}
.message-buttons-right{
display: none !important;
}
body, .gradio-container {
margin: 0;
padding: 0;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.HTML("<CENTER><B><h1 style='font-size:30px; font-family: Calibri;'>RedMindGPT</h1></B></CENTER>")
with gr.Row():
m = gr.Markdown()
demo.load(update_message, None, m)
# Logout link styled as text link in the right corner
gr.Markdown("<div class='logout-link'><a href='/logout'><b>Logout</b></a></div>")
with gr.Row():
sample_button = gr.Button("What are the details of ASN24091600002",elem_classes="gr-buttonbig")
sample_button1 = gr.Button("What are the active warehouses available",elem_classes="gr-buttonbig")
sample_button2 = gr.Button("Explain Pre-Receiving Yard Management",elem_classes="gr-buttonbig")
sample_button3 = gr.Button("Can you generate a pie chart with item names and quantities in warehouse 3PL WAREHOUSE",elem_classes="gr-buttonbig")
sample_button4 = gr.Button("Analyze item name & quantity for different customers in a stacked bar chart for the warehouse 3PL WAREHOUSE & send email to meetarun@gmail.com", elem_classes="gr-button")
with gr.Row():
chatbot = gr.Chatbot(label="Select any of the questions listed above to experience RedmindGPT in action.",elem_classes="chatbot_gpt")
with gr.Row():
with gr.Column(scale=2):
message = gr.Textbox(show_label=False, container=False, placeholder="Please enter your question")
with gr.Row():
feedback_textbox = gr.Textbox(visible=False, show_label=False, container=False, placeholder="Please enter your feedback.")
submit_feedback_button = gr.Button("Submit Feedback", visible=False,elem_classes="gr-buttonbig")
with gr.Column(scale=1):
with gr.Row():
button = gr.Button("Submit", elem_id="submit",elem_classes="gr-buttonbig")
# Button to stop the current processing
stop_button = gr.Button("Stop", elem_classes="gr-buttonbig")
#gr.ClearButton(message, elem_classes="gr-buttonbig")
stop_button.click(stop_processing, [chatbot],[chatbot])
button.click(handle_query, [message, chatbot], [chatbot])
message.submit(handle_query, [message, chatbot], [chatbot])
message.submit(lambda x: gr.update(value=""), None, [message], queue=False)
button.click(lambda x: gr.update(value=''), [], [message])
chatbot.like(handle_dislike, None, outputs=[feedback_textbox, submit_feedback_button])
submit_feedback_button.click(submit_feedback, [feedback_textbox, chatbot], [chatbot, feedback_textbox, submit_feedback_button])
submit_feedback_button.click(lambda x: gr.update(value=''), [], [feedback_textbox])
#sample_button.click(answer_question, [sample_button, chatbot], [chatbot])
sample_button.click(handle_query, [sample_button, chatbot], [chatbot])
sample_button1.click(handle_query, [sample_button1, chatbot], [chatbot])
sample_button2.click(handle_query, [sample_button2, chatbot], [chatbot])
sample_button3.click(handle_query, [sample_button3, chatbot], [chatbot])
sample_button4.click(handle_query, [sample_button4, chatbot], [chatbot])
#demo.unload(lambda: send_mail_with_history(chatbot))
demo.title = "RedmindGPT"
#user_details for login page
demo.launch(auth=[("lakshmi", "redmind"), ("arun", "redmind"), ("NewageGlobal", "Newage123$")], auth_message= " RedmindGPT",inline=False) |