Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
-
from transformers import MarianTokenizer, MarianMTModel, Seq2SeqTrainingArguments, Seq2SeqTrainer
|
2 |
from datasets import Dataset, DatasetDict
|
3 |
import pandas as pd
|
4 |
-
import torch
|
5 |
|
6 |
# Load the dataset
|
7 |
file_path = "hindi_dataset.tsv" # Update with your actual file path
|
@@ -24,23 +23,21 @@ model_name = "Helsinki-NLP/opus-mt-en-hi" # Pre-trained English-to-Hindi model
|
|
24 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
25 |
model = MarianMTModel.from_pretrained(model_name)
|
26 |
|
27 |
-
# Tokenize source
|
28 |
def tokenize_function(examples):
|
29 |
-
|
30 |
-
|
31 |
-
# Tokenize target (Hindi) text
|
32 |
-
def tokenize_target_function(examples):
|
33 |
with tokenizer.as_target_tokenizer():
|
34 |
-
|
|
|
|
|
35 |
|
36 |
# Apply tokenization to the dataset
|
37 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
38 |
-
tokenized_datasets = tokenized_datasets.map(tokenize_target_function, batched=True)
|
39 |
|
40 |
# Define the training arguments
|
41 |
training_args = Seq2SeqTrainingArguments(
|
42 |
output_dir="./results",
|
43 |
-
|
44 |
learning_rate=2e-5,
|
45 |
per_device_train_batch_size=16,
|
46 |
per_device_eval_batch_size=16,
|
@@ -53,16 +50,8 @@ training_args = Seq2SeqTrainingArguments(
|
|
53 |
save_steps=500
|
54 |
)
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
keys = ["input_ids", "attention_mask", "labels"]
|
59 |
-
max_length = max(len(feature[key]) for feature in features for key in keys if key in feature)
|
60 |
-
for feature in features:
|
61 |
-
for key in keys:
|
62 |
-
if key in feature:
|
63 |
-
padding = [0] * (max_length - len(feature[key]))
|
64 |
-
feature[key].extend(padding)
|
65 |
-
return {key: torch.tensor([f[key] for f in features]) for key in keys}
|
66 |
|
67 |
# Define the Trainer
|
68 |
trainer = Seq2SeqTrainer(
|
|
|
1 |
+
from transformers import MarianTokenizer, MarianMTModel, Seq2SeqTrainingArguments, Seq2SeqTrainer, DataCollatorForSeq2Seq
|
2 |
from datasets import Dataset, DatasetDict
|
3 |
import pandas as pd
|
|
|
4 |
|
5 |
# Load the dataset
|
6 |
file_path = "hindi_dataset.tsv" # Update with your actual file path
|
|
|
23 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
24 |
model = MarianMTModel.from_pretrained(model_name)
|
25 |
|
26 |
+
# Tokenize source and target text
|
27 |
def tokenize_function(examples):
|
28 |
+
model_inputs = tokenizer(examples['english'], truncation=True, padding='max_length', max_length=128)
|
|
|
|
|
|
|
29 |
with tokenizer.as_target_tokenizer():
|
30 |
+
labels = tokenizer(examples['hindi'], truncation=True, padding='max_length', max_length=128)
|
31 |
+
model_inputs['labels'] = labels['input_ids']
|
32 |
+
return model_inputs
|
33 |
|
34 |
# Apply tokenization to the dataset
|
35 |
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
|
|
36 |
|
37 |
# Define the training arguments
|
38 |
training_args = Seq2SeqTrainingArguments(
|
39 |
output_dir="./results",
|
40 |
+
evaluation_strategy="epoch",
|
41 |
learning_rate=2e-5,
|
42 |
per_device_train_batch_size=16,
|
43 |
per_device_eval_batch_size=16,
|
|
|
50 |
save_steps=500
|
51 |
)
|
52 |
|
53 |
+
# Use the DataCollatorForSeq2Seq for padding
|
54 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# Define the Trainer
|
57 |
trainer = Seq2SeqTrainer(
|