qwen2.5-7b-4bit / main.py
Gokulavelan's picture
initial
38d9b9a
raw
history blame
669 Bytes
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
app = FastAPI()
model_name = "mistralai/Mistral-7B-Instruct-v0.1" # Change to your model
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
@app.get("/")
def read_root():
return {"message": "Chat API is running!"}
@app.post("/chat")
def chat(prompt: str):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"response": response}