Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
import os | |
import pymupdf # PyMuPDF | |
from pptx import Presentation | |
from sentence_transformers import SentenceTransformer | |
import torch | |
from transformers import CLIPProcessor, CLIPModel | |
from PIL import Image | |
import chromadb | |
import numpy as np | |
from sklearn.decomposition import PCA | |
app = FastAPI() | |
# Initialize ChromaDB | |
client = chromadb.PersistentClient(path="/data/chroma_db") | |
collection = client.get_or_create_collection(name="knowledge_base") | |
# File Paths | |
pdf_file = "Sutures and Suturing techniques.pdf" | |
pptx_file = "impalnt 1.pptx" | |
# Initialize Embedding Models | |
text_model = SentenceTransformer('all-MiniLM-L6-v2') | |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
# Image Storage Folder | |
IMAGE_FOLDER = "/data/extracted_images" | |
os.makedirs(IMAGE_FOLDER, exist_ok=True) | |
# Extract Text from PDF | |
def extract_text_from_pdf(pdf_path): | |
try: | |
doc = pymupdf.open(pdf_path) | |
text = " ".join(page.get_text() for page in doc) | |
return text.strip() if text else None | |
except Exception as e: | |
print(f"Error extracting text from PDF: {e}") | |
return None | |
# Extract Text from PPTX | |
def extract_text_from_pptx(pptx_path): | |
try: | |
prs = Presentation(pptx_path) | |
text = " ".join( | |
shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text") | |
) | |
return text.strip() if text else None | |
except Exception as e: | |
print(f"Error extracting text from PPTX: {e}") | |
return None | |
# Extract Images from PDF | |
def extract_images_from_pdf(pdf_path): | |
try: | |
doc = pymupdf.open(pdf_path) | |
images = [] | |
for i, page in enumerate(doc): | |
for img_index, img in enumerate(page.get_images(full=True)): | |
xref = img[0] | |
image = doc.extract_image(xref) | |
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}" | |
with open(img_path, "wb") as f: | |
f.write(image["image"]) | |
images.append(img_path) | |
return images | |
except Exception as e: | |
print(f"Error extracting images from PDF: {e}") | |
return [] | |
# Extract Images from PPTX | |
def extract_images_from_pptx(pptx_path): | |
try: | |
images = [] | |
prs = Presentation(pptx_path) | |
for i, slide in enumerate(prs.slides): | |
for shape in slide.shapes: | |
if shape.shape_type == 13: | |
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}" | |
with open(img_path, "wb") as f: | |
f.write(shape.image.blob) | |
images.append(img_path) | |
return images | |
except Exception as e: | |
print(f"Error extracting images from PPTX: {e}") | |
return [] | |
# Convert Text to Embeddings | |
def get_text_embedding(text): | |
return text_model.encode(text).tolist() | |
# Preload PCA instance globally (to maintain consistency across calls) | |
pca = PCA(n_components=384) | |
def get_image_embedding(image_path): | |
try: | |
# Load the image | |
image = Image.open(image_path) | |
inputs = processor(images=image, return_tensors="pt") | |
# Extract image embeddings | |
with torch.no_grad(): | |
image_embedding = model.get_image_features(**inputs).numpy().flatten() | |
# Print the actual embedding dimension | |
print(f"Image embedding shape: {image_embedding.shape}") | |
""" # CASE 1: Embedding is already 384-dimensional ✅ | |
if len(image_embedding) == 384: | |
return image_embedding.tolist() | |
# CASE 2: Embedding is larger than 384 (e.g., 512) → Apply PCA ✅ | |
elif len(image_embedding) > 384: | |
pca = PCA(n_components=384, svd_solver='auto') # Auto solver for stability | |
image_embedding = pca.fit_transform(image_embedding.reshape(1, -1)).flatten() | |
print(f"Reduced image embedding shape: {image_embedding.shape}") | |
# CASE 3: Embedding is smaller than 384 → Apply Padding ❌ | |
else: | |
padding = np.zeros(384 - len(image_embedding)) # Create padding vector | |
image_embedding = np.concatenate((image_embedding, padding)) # Append padding""" | |
# Truncate to 384 dimensions | |
image_embedding = image_embedding[:384] | |
# Print the final embedding shape | |
print(f"Final Image embedding shape: {image_embedding.shape}") | |
return image_embedding.tolist() | |
except Exception as e: | |
print(f"❌ Error generating image embedding: {e}") | |
return None | |
# Store Data in ChromaDB | |
def store_data(texts, image_paths): | |
for i, text in enumerate(texts): | |
if text: | |
text_embedding = get_text_embedding(text) | |
if len(text_embedding) == 384: | |
collection.add(ids=[f"text_{i}"], embeddings=[text_embedding], documents=[text]) | |
all_embeddings = [get_image_embedding(img_path) for img_path in image_paths if get_image_embedding(img_path) is not None] | |
if all_embeddings: | |
all_embeddings = np.array(all_embeddings) | |
# Apply PCA only if necessary | |
if all_embeddings.shape[1] != 384: | |
pca = PCA(n_components=384) | |
all_embeddings = pca.fit_transform(all_embeddings) | |
for j, img_path in enumerate(image_paths): | |
collection.add(ids=[f"image_{j}"], embeddings=[all_embeddings[j].tolist()], documents=[img_path]) | |
print("Data stored successfully!") | |
# Process and Store from Files | |
def process_and_store(pdf_path=None, pptx_path=None): | |
texts, images = [], [] | |
if pdf_path: | |
pdf_text = extract_text_from_pdf(pdf_path) | |
if pdf_text: | |
texts.append(pdf_text) | |
images.extend(extract_images_from_pdf(pdf_path)) | |
if pptx_path: | |
pptx_text = extract_text_from_pptx(pptx_path) | |
if pptx_text: | |
texts.append(pptx_text) | |
images.extend(extract_images_from_pptx(pptx_path)) | |
store_data(texts, images) | |
# FastAPI Endpoints | |
def greet_json(): | |
# Run Data Processing | |
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file) | |
return {"Document store": "created!"} | |
def retrieval(query: str): | |
try: | |
query_embedding = get_text_embedding(query) | |
results = collection.query(query_embeddings=[query_embedding], n_results=5) | |
#return {"results": results.get("documents", [])} | |
# Set a similarity threshold (adjust as needed) | |
SIMILARITY_THRESHOLD = 0.7 | |
# Extract documents and similarity scores | |
documents = results.get("documents", [[]])[0] # Ensure we get the first list | |
distances = results.get("distances", [[]])[0] # Ensure we get the first list | |
# Filter results based on similarity threshold | |
filtered_results = [ | |
doc for doc, score in zip(documents, distances) if score >= SIMILARITY_THRESHOLD | |
] | |
# Return filtered results or indicate no match found | |
if filtered_results: | |
return {"results": filtered_results} | |
else: | |
return {"results": "No relevant match found in ChromaDB."} | |
except Exception as e: | |
return {"error": str(e)} | |
import pandas as pd | |
from io import StringIO | |
import os | |
import base64 | |
def save_file_dify(csv_data: str): | |
# Split into lines | |
lines = csv_data.split("\n") | |
# Find the max number of columns | |
max_cols = max(line.count(",") + 1 for line in lines if line.strip()) | |
# Normalize all rows to have the same number of columns | |
fixed_lines = [line + "," * (max_cols - line.count(",") - 1) for line in lines] | |
# Reconstruct CSV string | |
fixed_csv_data = "\n".join(fixed_lines) | |
# Convert CSV string to DataFrame | |
df = pd.read_csv(StringIO(fixed_csv_data)) | |
#save in dify dataset and return download link | |
download_link = get_download_link_dify(df) | |
return download_link | |
def get_download_link_dify(df): | |
# code to save file in dify framework | |
import requests | |
# API Configuration | |
BASE_URL = "http://redmindgpt.redmindtechnologies.com:81/v1" | |
DATASET_ID = "084ae979-d101-414b-8854-9bbf5d3a442e" | |
API_KEY = "dataset-feqz5KrqHkFRdWbh2DInt58L" | |
dataset_name = 'output_dataset' | |
# Endpoint URL | |
url = f"{BASE_URL}/datasets/{DATASET_ID}/document/create-by-file" | |
print(url) | |
# Headers | |
headers = { | |
"Authorization": f"Bearer {API_KEY}" | |
} | |
# Data payload (form data as a plain text string) | |
data_payload = { | |
"data": """ | |
{ | |
"indexing_technique": "high_quality", | |
"process_rule": { | |
"rules": { | |
"pre_processing_rules": [ | |
{"id": "remove_extra_spaces", "enabled": true}, | |
{"id": "remove_urls_emails", "enabled": true} | |
], | |
"segmentation": { | |
"separator": "###", | |
"max_tokens": 500 | |
} | |
}, | |
"mode": "custom" | |
} | |
} | |
""" | |
} | |
# Convert DataFrame to binary (in-memory) | |
file_buffer = dataframe_to_binary(df) | |
files = { | |
"file": ("output.xlsx", file_buffer, "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet") | |
} | |
# Send the POST request | |
response = requests.post(url, headers=headers, data=data_payload, files=files) | |
print(response) | |
data = response.json() | |
document_id = data['document']['id'] | |
# code to get download_url | |
url = f"http://redmindgpt.redmindtechnologies.com:81/v1/datasets/{DATASET_ID}/documents/{document_id}/upload-file" | |
response = requests.get(url, headers=headers) | |
print(response) | |
download_url = response.json().get("download_url") | |
download_url = download_url.replace("download/","") | |
return download_url | |
def dataframe_to_binary(df): | |
import io | |
# Create a BytesIO stream | |
output = io.BytesIO() | |
# Write the DataFrame to this in-memory buffer as an Excel file | |
df.to_excel(output, index=False, engine="openpyxl") | |
# Move the cursor to the beginning of the stream | |
output.seek(0) | |
return output | |