Reem333 commited on
Commit
26f0d6d
1 Parent(s): 6c04f52

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +133 -0
app.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import fitz
5
+ import os
6
+
7
+ model = AutoModelForSequenceClassification.from_pretrained("Reem333/Citaion-Classifier")
8
+ tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
9
+
10
+ def extract_text_from_pdf(file_path):
11
+ text = ''
12
+ with fitz.open(file_path) as pdf_document:
13
+ for page_number in range(pdf_document.page_count):
14
+ page = pdf_document.load_page(page_number)
15
+ text += page.get_text()
16
+ return text
17
+
18
+ def predict_class(text):
19
+ try:
20
+ max_length = 4096
21
+ truncated_text = text[:max_length]
22
+
23
+ inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
24
+ with torch.no_grad():
25
+ outputs = model(**inputs)
26
+ logits = outputs.logits
27
+ predicted_class = torch.argmax(logits, dim=1).item()
28
+ return predicted_class
29
+ except Exception as e:
30
+ st.error(f"Error during prediction: {e}")
31
+ return None
32
+
33
+ uploaded_files_dir = "uploaded_files"
34
+ os.makedirs(uploaded_files_dir, exist_ok=True)
35
+
36
+ class_colors = {
37
+ 0: "#d62728", # Level 1
38
+ 1: "#ff7f0e", # Level 2
39
+ 2: "#2ca02c", # Level 3
40
+ 3: "#1f77b4" # Level 4
41
+ }
42
+
43
+ st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png")
44
+
45
+ with st.sidebar:
46
+ st.image("logo.png", width=70)
47
+ st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True)
48
+
49
+ st.markdown("# Paper Citation Classifier")
50
+ st.markdown("---")
51
+ st.markdown("## About")
52
+ st.markdown('''
53
+ This is a tool to classify paper citations into different levels based on their number of citations.
54
+ Powered by Fine-Tuned [Longformer model](https://huggingface.co/REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier) with custom data.
55
+ ''')
56
+ st.markdown("### Class Levels:")
57
+ st.markdown("- Level 1: Highly cited papers")
58
+ st.markdown("- Level 2: Average cited papers")
59
+ st.markdown("- Level 3: More cited papers")
60
+ st.markdown("- Level 4: Low cited papers")
61
+ st.markdown("---")
62
+ st.markdown('Tabuk University')
63
+
64
+ st.title("Check Your Paper Now!")
65
+
66
+ option = st.radio("Select input type:", ("Text", "PDF"))
67
+
68
+ if option == "Text":
69
+ title_input = st.text_area("Enter Title:")
70
+ abstract_input = st.text_area("Enter Abstract:")
71
+ full_text_input = st.text_area("Enter Full Text:")
72
+ affiliations_input = st.text_area("Enter Affiliations:")
73
+ keywords_input = st.text_area("Enter Keywords:")
74
+ options=["Nursing", "Physics", "Maths", "Chemical", "Nuclear", "Engineering" ,"Other"]
75
+
76
+ selected_category = st.selectbox("Select WoS categories:", options, index= None)
77
+ if selected_category == "Other":
78
+ custom_category = st.text_input("Enter custom category:")
79
+ selected_category = custom_category if custom_category else "Other"
80
+
81
+ combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {' [SEP] '.join(full_text_input)}"
82
+
83
+ if st.button("Predict"):
84
+ if not any([title_input, abstract_input,keywords_input, full_text_input, affiliations_input]):
85
+ st.warning("Please enter paper text.")
86
+ else:
87
+ with st.spinner("Predicting..."):
88
+ predicted_class = predict_class(combined_text)
89
+ if predicted_class is not None:
90
+ class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
91
+
92
+ st.text("Predicted Class:")
93
+ for i, label in enumerate(class_labels):
94
+ if i == predicted_class:
95
+ st.markdown(
96
+ f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
97
+ unsafe_allow_html=True
98
+ )
99
+ else:
100
+ st.text(label)
101
+
102
+ elif option == "PDF":
103
+ uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
104
+
105
+ if uploaded_file is not None:
106
+ with st.spinner("Processing PDF..."):
107
+ file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
108
+ with open(file_path, "wb") as f:
109
+ f.write(uploaded_file.getbuffer())
110
+ st.success("File uploaded successfully.")
111
+ st.text(f"File Path: {file_path}")
112
+
113
+ file_text = extract_text_from_pdf(file_path)
114
+ st.text("Extracted Text:")
115
+ st.text(file_text)
116
+
117
+ if st.button("Predict from PDF Text"):
118
+ if not file_text.strip():
119
+ st.warning("Please upload a PDF with text content.")
120
+ else:
121
+ with st.spinner("Predicting..."):
122
+ predicted_class = predict_class(file_text)
123
+ if predicted_class is not None:
124
+ class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
125
+ st.text("**Predicted Class:**")
126
+ for i, label in enumerate(class_labels):
127
+ if i == predicted_class:
128
+ st.markdown(
129
+ f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
130
+ unsafe_allow_html=True
131
+ )
132
+ else:
133
+ st.text(label)