Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,6 @@ import os
|
|
7 |
model = AutoModelForSequenceClassification.from_pretrained("Reem333/Citaion-Classifier")
|
8 |
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
9 |
|
10 |
-
def extract_text_from_pdf(file_path):
|
11 |
-
text = ''
|
12 |
-
with fitz.open(file_path) as pdf_document:
|
13 |
-
for page_number in range(pdf_document.page_count):
|
14 |
-
page = pdf_document.load_page(page_number)
|
15 |
-
text += page.get_text()
|
16 |
-
return text
|
17 |
-
|
18 |
def predict_class(text):
|
19 |
try:
|
20 |
max_length = 4096
|
@@ -30,8 +22,6 @@ def predict_class(text):
|
|
30 |
st.error(f"Error during prediction: {e}")
|
31 |
return None
|
32 |
|
33 |
-
uploaded_files_dir = "uploaded_files"
|
34 |
-
os.makedirs(uploaded_files_dir, exist_ok=True)
|
35 |
|
36 |
class_colors = {
|
37 |
0: "#d62728", # Level 1
|
@@ -63,71 +53,36 @@ with st.sidebar:
|
|
63 |
|
64 |
st.title("Check Your Paper Now!")
|
65 |
|
66 |
-
option = st.radio("Select input type:", ("Text", "PDF"))
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
options=["Nursing", "Physics", "Maths", "Chemical", "Nuclear", "Engineering" ,"Other"]
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
elif option == "PDF":
|
103 |
-
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
104 |
-
|
105 |
-
if uploaded_file is not None:
|
106 |
-
with st.spinner("Processing PDF..."):
|
107 |
-
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
108 |
-
with open(file_path, "wb") as f:
|
109 |
-
f.write(uploaded_file.getbuffer())
|
110 |
-
st.success("File uploaded successfully.")
|
111 |
-
st.text(f"File Path: {file_path}")
|
112 |
-
|
113 |
-
file_text = extract_text_from_pdf(file_path)
|
114 |
-
st.text("Extracted Text:")
|
115 |
-
st.text(file_text)
|
116 |
-
|
117 |
-
if st.button("Predict from PDF Text"):
|
118 |
-
if not file_text.strip():
|
119 |
-
st.warning("Please upload a PDF with text content.")
|
120 |
-
else:
|
121 |
-
with st.spinner("Predicting..."):
|
122 |
-
predicted_class = predict_class(file_text)
|
123 |
-
if predicted_class is not None:
|
124 |
-
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
125 |
-
st.text("**Predicted Class:**")
|
126 |
-
for i, label in enumerate(class_labels):
|
127 |
-
if i == predicted_class:
|
128 |
-
st.markdown(
|
129 |
-
f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
|
130 |
-
unsafe_allow_html=True
|
131 |
-
)
|
132 |
-
else:
|
133 |
-
st.text(label)
|
|
|
7 |
model = AutoModelForSequenceClassification.from_pretrained("Reem333/Citaion-Classifier")
|
8 |
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def predict_class(text):
|
11 |
try:
|
12 |
max_length = 4096
|
|
|
22 |
st.error(f"Error during prediction: {e}")
|
23 |
return None
|
24 |
|
|
|
|
|
25 |
|
26 |
class_colors = {
|
27 |
0: "#d62728", # Level 1
|
|
|
53 |
|
54 |
st.title("Check Your Paper Now!")
|
55 |
|
|
|
56 |
|
57 |
+
title_input = st.text_area("Enter Title:")
|
58 |
+
abstract_input = st.text_area("Enter Abstract:")
|
59 |
+
full_text_input = st.text_area("Enter Full Text:")
|
60 |
+
affiliations_input = st.text_area("Enter Affiliations:")
|
61 |
+
keywords_input = st.text_area("Enter Keywords:")
|
62 |
+
options=["Nursing", "Physics", "Maths", "Chemical", "Nuclear", "Engineering" ,"Other"]
|
|
|
63 |
|
64 |
+
selected_category = st.selectbox("Select WoS categories:", options, index= None)
|
65 |
+
if selected_category == "Other":
|
66 |
+
custom_category = st.text_input("Enter custom category:")
|
67 |
+
selected_category = custom_category if custom_category else "Other"
|
68 |
+
|
69 |
+
combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {' [SEP] '.join(full_text_input)}"
|
70 |
+
|
71 |
+
if st.button("Predict"):
|
72 |
+
if not any([title_input, abstract_input,keywords_input, full_text_input, affiliations_input]):
|
73 |
+
st.warning("Please enter paper text.")
|
74 |
+
else:
|
75 |
+
with st.spinner("Predicting..."):
|
76 |
+
predicted_class = predict_class(combined_text)
|
77 |
+
if predicted_class is not None:
|
78 |
+
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
79 |
+
|
80 |
+
st.text("Predicted Class:")
|
81 |
+
for i, label in enumerate(class_labels):
|
82 |
+
if i == predicted_class:
|
83 |
+
st.markdown(
|
84 |
+
f'<div style="background-color: {class_colors[predicted_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
|
85 |
+
unsafe_allow_html=True
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
st.text(label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|