Reem333 commited on
Commit
1517448
·
verified ·
1 Parent(s): b151eaf

Upload ‏‏app.py

Browse files
Files changed (1) hide show
  1. ‏‏app.py +126 -0
‏‏app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import fitz
5
+ import os
6
+
7
+ # Load Longformer model and tokenizer
8
+ longformer_model = AutoModelForSequenceClassification.from_pretrained("Reem333/Longformer")
9
+ longformer_tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
10
+
11
+ # Load BERT model and tokenizer
12
+ bert_model = AutoModelForSequenceClassification.from_pretrained("Reem333/BERT")
13
+ bert_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
14
+
15
+ # Function to extract text from PDF
16
+ def extract_text_from_pdf(file_path):
17
+ text = ''
18
+ try:
19
+ with fitz.open(file_path) as pdf_document:
20
+ for page_number in range(pdf_document.page_count):
21
+ page = pdf_document.load_page(page_number)
22
+ text += page.get_text()
23
+ except Exception as e:
24
+ st.error(f"Error reading PDF file: {e}")
25
+ return text
26
+
27
+ # Function to predict the class of the text using a specified model and tokenizer
28
+ def predict_class(text, model, tokenizer):
29
+ try:
30
+ max_length = 4096 if "longformer" in str(model) else 512
31
+ truncated_text = text[:max_length]
32
+
33
+ inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
34
+ with torch.no_grad():
35
+ outputs = model(**inputs)
36
+ logits = outputs.logits
37
+ predicted_class = torch.argmax(logits, dim=1).item()
38
+ return predicted_class
39
+ except Exception as e:
40
+ st.error(f"Error during prediction: {e}")
41
+ return None
42
+
43
+ # Setup for uploaded files directory
44
+ uploaded_files_dir = "uploaded_files"
45
+ os.makedirs(uploaded_files_dir, exist_ok=True)
46
+
47
+ # Color mapping for class levels
48
+ class_colors = {
49
+ 0: "#d62728", # Level 1
50
+ 1: "#ff7f0e", # Level 2
51
+ 2: "#2ca02c", # Level 3
52
+ 3: "#1f77b4" # Level 4
53
+ }
54
+
55
+ # Streamlit page configuration
56
+ st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png")
57
+
58
+ # Sidebar content
59
+ with st.sidebar:
60
+ st.image("logo.png", width=70)
61
+ st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True)
62
+ st.markdown("# Paper Citation Classifier")
63
+ st.markdown("---")
64
+ st.markdown("## About")
65
+ st.markdown('''
66
+ This tool classifies paper citations into different levels based on their number of citations.
67
+ Powered by Fine-Tuned [Longformer model](https://huggingface.co/REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier) and BERT model with custom data.
68
+ ''')
69
+ st.markdown("### Class Levels:")
70
+ st.markdown("- Level 1: Highly cited papers")
71
+ st.markdown("- Level 2: Average cited papers")
72
+ st.markdown("- Level 3: More cited papers")
73
+ st.markdown("- Level 4: Low cited papers")
74
+ st.markdown("---")
75
+ st.markdown('Tabuk University')
76
+
77
+ st.title("Check Your Paper Now!")
78
+
79
+ # Main content
80
+ option = st.radio("Select input type:", ("Text", "PDF"))
81
+
82
+ if option == "Text":
83
+ title_input = st.text_area("Enter Title:")
84
+ abstract_input = st.text_area("Enter Abstract:")
85
+ full_text_input = st.text_area("Enter Full Text:")
86
+ affiliations_input = st.text_area("Enter Affiliations:")
87
+ keywords_input = st.text_area("Enter Keywords:")
88
+ options = ['cs', "AI"]
89
+
90
+ selected_category = st.selectbox("Select WoS categories:", options)
91
+ if selected_category == "Other":
92
+ custom_category = st.text_input("Enter custom category:")
93
+ selected_category = custom_category if custom_category else "Other"
94
+
95
+ combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {full_text_input}"
96
+
97
+ if st.button("Predict"):
98
+ if not any([title_input, abstract_input, keywords_input, full_text_input, affiliations_input]):
99
+ st.warning("Please enter paper text.")
100
+ else:
101
+ with st.spinner("Predicting..."):
102
+ longformer_class = predict_class(combined_text, longformer_model, longformer_tokenizer)
103
+ bert_class = predict_class(combined_text, bert_model, bert_tokenizer)
104
+ if longformer_class is not None and bert_class is not None:
105
+ class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
106
+
107
+ st.text("Longformer Predicted Class:")
108
+ for i, label in enumerate(class_labels):
109
+ if i == longformer_class:
110
+ st.markdown(
111
+ f'<div style="background-color: {class_colors[longformer_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
112
+ unsafe_allow_html=True
113
+ )
114
+ else:
115
+ st.text(label)
116
+
117
+ st.text("BERT Predicted Class:")
118
+ for i, label in enumerate(class_labels):
119
+ if i == bert_class:
120
+ st.markdown(
121
+ f'<div style="background-color: {class_colors[bert_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
122
+ unsafe_allow_html=True
123
+ )
124
+ else:
125
+ st.text(label)
126
+