Upload 2 files
Browse files- app.py +65 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import fitz
|
5 |
+
import os
|
6 |
+
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
9 |
+
|
10 |
+
def extract_text_from_pdf(file_path):
|
11 |
+
text = ''
|
12 |
+
with fitz.open(file_path) as pdf_document:
|
13 |
+
for page_number in range(pdf_document.page_count):
|
14 |
+
page = pdf_document.load_page(page_number)
|
15 |
+
text += page.get_text()
|
16 |
+
return text
|
17 |
+
|
18 |
+
def predict_class(text):
|
19 |
+
try:
|
20 |
+
max_length = 4096
|
21 |
+
truncated_text = text[:max_length]
|
22 |
+
|
23 |
+
inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
logits = outputs.logits
|
27 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
28 |
+
return predicted_class
|
29 |
+
except Exception as e:
|
30 |
+
st.error(f"Error during prediction: {e}")
|
31 |
+
return None
|
32 |
+
|
33 |
+
uploaded_files_dir = "uploaded_files"
|
34 |
+
os.makedirs(uploaded_files_dir, exist_ok=True)
|
35 |
+
|
36 |
+
st.title("Paper Citation Classifier")
|
37 |
+
option = st.radio("Select input type:", ("Text", "PDF"))
|
38 |
+
|
39 |
+
if option == "Text":
|
40 |
+
text_input = st.text_area("Enter your text here:")
|
41 |
+
if st.button("Predict") and text_input.strip():
|
42 |
+
predicted_class = predict_class(text_input)
|
43 |
+
if predicted_class is not None:
|
44 |
+
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
45 |
+
st.text(f"Predicted Class: {class_labels[predicted_class]}")
|
46 |
+
|
47 |
+
elif option == "PDF":
|
48 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
49 |
+
|
50 |
+
if uploaded_file is not None:
|
51 |
+
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
52 |
+
with open(file_path, "wb") as f:
|
53 |
+
f.write(uploaded_file.getbuffer())
|
54 |
+
st.success("File uploaded successfully.")
|
55 |
+
st.text(f"File Path: {file_path}")
|
56 |
+
|
57 |
+
file_text = extract_text_from_pdf(file_path)
|
58 |
+
st.text("Extracted Text:")
|
59 |
+
st.text(file_text)
|
60 |
+
|
61 |
+
if st.button("Predict"):
|
62 |
+
predicted_class = predict_class(file_text)
|
63 |
+
if predicted_class is not None:
|
64 |
+
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
65 |
+
st.text(f"Predicted Class: {class_labels[predicted_class]}")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
PyMuPDF
|
5 |
+
PyPDFium2
|