import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import fitz import os # Load Longformer model and tokenizer longformer_model = AutoModelForSequenceClassification.from_pretrained("Reem333/Longformer") longformer_tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") # Load BERT model and tokenizer bert_model = AutoModelForSequenceClassification.from_pretrained("Reem333/BERT") bert_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") # Function to extract text from PDF def extract_text_from_pdf(file_path): text = '' try: with fitz.open(file_path) as pdf_document: for page_number in range(pdf_document.page_count): page = pdf_document.load_page(page_number) text += page.get_text() except Exception as e: st.error(f"Error reading PDF file: {e}") return text # Function to predict the class of the text using a specified model and tokenizer def predict_class(text, model, tokenizer): try: max_length = 4096 if "longformer" in str(model) else 512 truncated_text = text[:max_length] inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class = torch.argmax(logits, dim=1).item() return predicted_class except Exception as e: st.error(f"Error during prediction: {e}") return None # Setup for uploaded files directory uploaded_files_dir = "uploaded_files" os.makedirs(uploaded_files_dir, exist_ok=True) # Color mapping for class levels class_colors = { 0: "#d62728", # Level 1 1: "#ff7f0e", # Level 2 2: "#2ca02c", # Level 3 3: "#1f77b4" # Level 4 } # Streamlit page configuration st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png") # Sidebar content with st.sidebar: st.image("logo.png", width=70) st.markdown('
', unsafe_allow_html=True) st.markdown("# Paper Citation Classifier") st.markdown("---") st.markdown("## About") st.markdown(''' This tool classifies paper citations into different levels based on their number of citations. Powered by Fine-Tuned [Longformer model](https://huggingface.co/REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier) and BERT model with custom data. ''') st.markdown("### Class Levels:") st.markdown("- Level 1: Highly cited papers") st.markdown("- Level 2: Average cited papers") st.markdown("- Level 3: More cited papers") st.markdown("- Level 4: Low cited papers") st.markdown("---") st.markdown('Tabuk University') st.title("Check Your Paper Now!") # Main content option = st.radio("Select input type:", ("Text", "PDF")) if option == "Text": title_input = st.text_area("Enter Title:") abstract_input = st.text_area("Enter Abstract:") full_text_input = st.text_area("Enter Full Text:") affiliations_input = st.text_area("Enter Affiliations:") keywords_input = st.text_area("Enter Keywords:") options = ['cs', "AI"] selected_category = st.selectbox("Select WoS categories:", options) if selected_category == "Other": custom_category = st.text_input("Enter custom category:") selected_category = custom_category if custom_category else "Other" combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {full_text_input}" if st.button("Predict"): if not any([title_input, abstract_input, keywords_input, full_text_input, affiliations_input]): st.warning("Please enter paper text.") else: with st.spinner("Predicting..."): longformer_class = predict_class(combined_text, longformer_model, longformer_tokenizer) bert_class = predict_class(combined_text, bert_model, bert_tokenizer) if longformer_class is not None and bert_class is not None: class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"] st.text("Longformer Predicted Class:") for i, label in enumerate(class_labels): if i == longformer_class: st.markdown( f'
{label}
', unsafe_allow_html=True ) else: st.text(label) st.text("BERT Predicted Class:") for i, label in enumerate(class_labels): if i == bert_class: st.markdown( f'
{label}
', unsafe_allow_html=True ) else: st.text(label)