from flask import Flask, render_template, request, jsonify from qdrant_client import QdrantClient from qdrant_client import models import torch.nn.functional as F import torch from torch import Tensor from transformers import AutoTokenizer, AutoModel from qdrant_client.models import Batch, PointStruct from pickle import load, dump import numpy as np import os, time, sys from datetime import datetime as dt from datetime import timedelta from datetime import timezone app = Flask(__name__) # Initialize Qdrant Client and other required settings qdrant_api_key = os.environ.get("qdrant_api_key") qdrant_url = os.environ.get("qdrant_url") client = QdrantClient(url=qdrant_url, port=443, api_key=qdrant_api_key, prefer_grpc=False) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base-v2') model = AutoModel.from_pretrained('intfloat/e5-base-v2').to(device) def e5embed(query): batch_dict = tokenizer(query, max_length=512, padding=True, truncation=True, return_tensors='pt') batch_dict = {k: v.to(device) for k, v in batch_dict.items()} outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) embeddings = embeddings.cpu().detach().numpy().flatten().tolist() return embeddings @app.route("/") def index(): return render_template("index.html") @app.route("/search", methods=["POST"]) def search(): query = request.form["query"] topN = 200 # Define your topN value print('QUERY: ',query) if query.strip().startswith('tilc:'): collection_name = 'tils' qvector = "context" query = query.replace('tilc:', '') elif query.strip().startswith('til:'): collection_name = 'tils' qvector = "title" query = query.replace('til:', '') else: collection_name = 'jks' timh = time.time() sq = e5embed(query) print('EMBEDDING TIME: ', time.time() - timh) timh = time.time() if collection_name == "jks": results = client.search(collection_name=collection_name, query_vector=sq, with_payload=True, limit=topN) else: results = client.search(collection_name=collection_name, query_vector=(qvector, sq), with_payload=True, limit=100) print('SEARCH TIME: ', time.time() - timh) print(results[0].payload['text'].split('\n')) try: results = [{"text": x.payload['text'], "date": str(int(x.payload['date'])), "id": x.id} for x in results] # Implement your Qdrant search here return jsonify(results) except: return jsonify([]) @app.route("/delete_joke", methods=["POST"]) def delete_joke(): joke_id = request.form["id"] print('Deleting joke no', joke_id) client.delete(collection_name="jks", points_selector=models.PointIdsList(points=[int(joke_id)],),) return jsonify({"deleted": True}) if __name__ == "__main__": app.run(host="0.0.0.0", debug=True, port=7860)