|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import pathlib |
|
import torch |
|
import gradio as gr |
|
|
|
from vtoonify_model import Model |
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--theme', type=str) |
|
parser.add_argument('--share', action='store_true') |
|
parser.add_argument('--port', type=int) |
|
parser.add_argument('--disable-queue', |
|
dest='enable_queue', |
|
action='store_false') |
|
return parser.parse_args() |
|
|
|
DESCRIPTION = ''' |
|
<div align=center> |
|
<h1 style="font-weight: 900; margin-bottom: 7px;"> |
|
Portrait Style Transfer with <a href="https://github.com/williamyang1991/VToonify">VToonify</a> |
|
</h1> |
|
<p>For faster inference without waiting in queue, you may duplicate the space and use the GPU setting. |
|
<br/> |
|
<a href="https://huggingface.co/spaces/PKUWilliamYang/VToonify?duplicate=true"> |
|
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
<p/> |
|
<video id="video" width=50% controls="" preload="none" poster="https://repository-images.githubusercontent.com/534480768/53715b0f-a2df-4daa-969c-0e74c102d339"> |
|
<source id="mp4" src="https://user-images.githubusercontent.com/18130694/189483939-0fc4a358-fb34-43cc-811a-b22adb820d57.mp4 |
|
" type="video/mp4"> |
|
</videos> |
|
</div> |
|
''' |
|
FOOTER = '<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=williamyang1991/VToonify" /></div>' |
|
|
|
ARTICLE = r""" |
|
If VToonify is helpful, please help to β the <a href='https://github.com/williamyang1991/VToonify' target='_blank'>Github Repo</a>. Thanks! |
|
[![GitHub Stars](https://img.shields.io/github/stars/williamyang1991/VToonify?style=social)](https://github.com/williamyang1991/VToonify) |
|
--- |
|
π **Citation** |
|
If our work is useful for your research, please consider citing: |
|
```bibtex |
|
@article{yang2022Vtoonify, |
|
title={VToonify: Controllable High-Resolution Portrait Video Style Transfer}, |
|
author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change}, |
|
journal={ACM Transactions on Graphics (TOG)}, |
|
volume={41}, |
|
number={6}, |
|
articleno={203}, |
|
pages={1--15}, |
|
year={2022}, |
|
publisher={ACM New York, NY, USA}, |
|
doi={10.1145/3550454.3555437}, |
|
} |
|
``` |
|
|
|
π **License** |
|
This project is licensed under <a rel="license" href="https://github.com/williamyang1991/VToonify/blob/main/LICENSE.md">S-Lab License 1.0</a>. |
|
Redistribution and use for non-commercial purposes should follow this license. |
|
|
|
π§ **Contact** |
|
If you have any questions, please feel free to reach me out at <b>williamyang@pku.edu.cn</b>. |
|
""" |
|
|
|
def update_slider(choice: str) -> dict: |
|
if type(choice) == str and choice.endswith('-d'): |
|
return gr.Slider.update(maximum=1, minimum=0, value=0.5) |
|
else: |
|
return gr.Slider.update(maximum=0.5, minimum=0.5, value=0.5) |
|
|
|
def set_example_image(example: list) -> dict: |
|
return gr.Image.update(value=example[0]) |
|
|
|
def set_example_video(example: list) -> dict: |
|
return gr.Video.update(value=example[0]), |
|
|
|
sample_video = ['./vtoonify/data/529_2.mp4','./vtoonify/data/7154235.mp4','./vtoonify/data/651.mp4','./vtoonify/data/908.mp4'] |
|
sample_vid = gr.Video(label='Video file') |
|
example_videos = gr.components.Dataset(components=[sample_vid], samples=[[path] for path in sample_video], type='values', label='Video Examples') |
|
|
|
def main(): |
|
args = parse_args() |
|
args.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
print('*** Now using %s.'%(args.device)) |
|
model = Model(device=args.device) |
|
|
|
with gr.Blocks(theme=args.theme, css='style.css') as demo: |
|
|
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Box(): |
|
gr.Markdown('''## Step 1(Select Style) |
|
- Select **Style Type**. |
|
- Type with `-d` means it supports style degree adjustment. |
|
- Type without `-d` usually has better toonification quality. |
|
|
|
''') |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown('''Select Style Type''') |
|
with gr.Row(): |
|
style_type = gr.Radio(label='Style Type', |
|
choices=['cartoon1','cartoon1-d','cartoon2-d','cartoon3-d', |
|
'cartoon4','cartoon4-d','cartoon5-d','comic1-d', |
|
'comic2-d','arcane1','arcane1-d','arcane2', 'arcane2-d', |
|
'caricature1','caricature2','pixar','pixar-d', |
|
'illustration1-d', 'illustration2-d', 'illustration3-d', 'illustration4-d', 'illustration5-d', |
|
] |
|
) |
|
exstyle = gr.Variable() |
|
with gr.Row(): |
|
loadmodel_button = gr.Button('Load Model') |
|
with gr.Row(): |
|
load_info = gr.Textbox(label='Process Information', interactive=False, value='No model loaded.') |
|
with gr.Column(): |
|
gr.Markdown('''Reference Styles |
|
![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/style.jpg)''') |
|
|
|
|
|
with gr.Box(): |
|
gr.Markdown('''## Step 2 (Preprocess Input Image / Video) |
|
- Drop an image/video containing a near-frontal face to the **Input Image**/**Input Video**. |
|
- Hit the **Rescale Image**/**Rescale First Frame** button. |
|
- Rescale the input to make it best fit the model. |
|
- The final image result will be based on this **Rescaled Face**. Use padding parameters to adjust the background space. |
|
- **<font color=red>Solution to [Error: no face detected!]</font>**: VToonify uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. You can try several times or use other images until a face is detected, then switch back to the original image. |
|
- For video input, further hit the **Rescale Video** button. |
|
- The final video result will be based on this **Rescaled Video**. To avoid overload, video is cut to at most **100/300** frames for CPU/GPU, respectively. |
|
|
|
''') |
|
with gr.Row(): |
|
with gr.Box(): |
|
with gr.Column(): |
|
gr.Markdown('''Choose the padding parameters. |
|
![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/rescale.jpg)''') |
|
with gr.Row(): |
|
top = gr.Slider(128, |
|
256, |
|
value=200, |
|
step=8, |
|
label='top') |
|
with gr.Row(): |
|
bottom = gr.Slider(128, |
|
256, |
|
value=200, |
|
step=8, |
|
label='bottom') |
|
with gr.Row(): |
|
left = gr.Slider(128, |
|
256, |
|
value=200, |
|
step=8, |
|
label='left') |
|
with gr.Row(): |
|
right = gr.Slider(128, |
|
256, |
|
value=200, |
|
step=8, |
|
label='right') |
|
with gr.Box(): |
|
with gr.Column(): |
|
gr.Markdown('''Input''') |
|
with gr.Row(): |
|
input_image = gr.Image(label='Input Image', |
|
type='filepath') |
|
with gr.Row(): |
|
preprocess_image_button = gr.Button('Rescale Image') |
|
with gr.Row(): |
|
input_video = gr.Video(label='Input Video', |
|
mirror_webcam=False, |
|
type='filepath') |
|
with gr.Row(): |
|
preprocess_video0_button = gr.Button('Rescale First Frame') |
|
preprocess_video1_button = gr.Button('Rescale Video') |
|
|
|
with gr.Box(): |
|
with gr.Column(): |
|
gr.Markdown('''View''') |
|
with gr.Row(): |
|
input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') |
|
with gr.Row(): |
|
aligned_face = gr.Image(label='Rescaled Face', |
|
type='numpy', |
|
interactive=False) |
|
instyle = gr.Variable() |
|
with gr.Row(): |
|
aligned_video = gr.Video(label='Rescaled Video', |
|
type='mp4', |
|
interactive=False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
paths = ['./vtoonify/data/pexels-andrea-piacquadio-733872.jpg','./vtoonify/data/i5R8hbZFDdc.jpg','./vtoonify/data/yRpe13BHdKw.jpg','./vtoonify/data/ILip77SbmOE.jpg','./vtoonify/data/077436.jpg','./vtoonify/data/081680.jpg'] |
|
example_images = gr.Dataset(components=[input_image], |
|
samples=[[path] for path in paths], |
|
label='Image Examples') |
|
with gr.Column(): |
|
|
|
|
|
example_videos.render() |
|
|
|
def load_examples(video): |
|
|
|
|
|
return video[0] |
|
|
|
example_videos.click(load_examples, example_videos, input_video) |
|
|
|
with gr.Box(): |
|
gr.Markdown('''## Step 3 (Generate Style Transferred Image/Video)''') |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown(''' |
|
|
|
- Adjust **Style Degree**. |
|
- Hit **Toonify!** to toonify one frame. Hit **VToonify!** to toonify full video. |
|
- Estimated time on 1600x1440 video of 300 frames: 1 hour (CPU); 2 mins (GPU) |
|
''') |
|
style_degree = gr.Slider(0, |
|
1, |
|
value=0.5, |
|
step=0.05, |
|
label='Style Degree') |
|
with gr.Column(): |
|
gr.Markdown('''![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/degree.jpg) |
|
''') |
|
with gr.Row(): |
|
output_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
result_face = gr.Image(label='Result Image', |
|
type='numpy', |
|
interactive=False) |
|
with gr.Row(): |
|
toonify_button = gr.Button('Toonify!') |
|
with gr.Column(): |
|
with gr.Row(): |
|
result_video = gr.Video(label='Result Video', |
|
type='mp4', |
|
interactive=False) |
|
with gr.Row(): |
|
vtoonify_button = gr.Button('VToonify!') |
|
|
|
gr.Markdown(ARTICLE) |
|
gr.Markdown(FOOTER) |
|
|
|
loadmodel_button.click(fn=model.load_model, |
|
inputs=[style_type], |
|
outputs=[exstyle, load_info]) |
|
|
|
|
|
style_type.change(fn=update_slider, |
|
inputs=style_type, |
|
outputs=style_degree) |
|
|
|
preprocess_image_button.click(fn=model.detect_and_align_image, |
|
inputs=[input_image, top, bottom, left, right], |
|
outputs=[aligned_face, instyle, input_info]) |
|
preprocess_video0_button.click(fn=model.detect_and_align_video, |
|
inputs=[input_video, top, bottom, left, right], |
|
outputs=[aligned_face, instyle, input_info]) |
|
preprocess_video1_button.click(fn=model.detect_and_align_full_video, |
|
inputs=[input_video, top, bottom, left, right], |
|
outputs=[aligned_video, instyle, input_info]) |
|
|
|
toonify_button.click(fn=model.image_toonify, |
|
inputs=[aligned_face, instyle, exstyle, style_degree, style_type], |
|
outputs=[result_face, output_info]) |
|
vtoonify_button.click(fn=model.video_tooniy, |
|
inputs=[aligned_video, instyle, exstyle, style_degree, style_type], |
|
outputs=[result_video, output_info]) |
|
|
|
|
|
example_images.click(fn=set_example_image, |
|
inputs=example_images, |
|
outputs=example_images.components) |
|
|
|
demo.launch( |
|
enable_queue=args.enable_queue, |
|
server_port=args.port, |
|
share=args.share, |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|