|
"""
|
|
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
|
|
author: lzhbrian (https://lzhbrian.me)
|
|
date: 2020.1.5
|
|
note: code is heavily borrowed from
|
|
https://github.com/NVlabs/ffhq-dataset
|
|
http://dlib.net/face_landmark_detection.py.html
|
|
|
|
requirements:
|
|
apt install cmake
|
|
conda install Pillow numpy scipy
|
|
pip install dlib
|
|
# download face landmark model from:
|
|
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
|
|
"""
|
|
from argparse import ArgumentParser
|
|
import time
|
|
import numpy as np
|
|
import PIL
|
|
import PIL.Image
|
|
import os
|
|
import scipy
|
|
import scipy.ndimage
|
|
import dlib
|
|
import multiprocessing as mp
|
|
import math
|
|
|
|
|
|
SHAPE_PREDICTOR_PATH = 'shape_predictor_68_face_landmarks.dat'
|
|
|
|
|
|
def get_landmark(filepath, predictor):
|
|
"""get landmark with dlib
|
|
:return: np.array shape=(68, 2)
|
|
"""
|
|
detector = dlib.get_frontal_face_detector()
|
|
if type(filepath) == str:
|
|
img = dlib.load_rgb_image(filepath)
|
|
else:
|
|
img = filepath
|
|
dets = detector(img, 1)
|
|
|
|
if len(dets) == 0:
|
|
print('Error: no face detected!')
|
|
return None
|
|
|
|
shape = None
|
|
for k, d in enumerate(dets):
|
|
shape = predictor(img, d)
|
|
|
|
if shape is None:
|
|
print('Error: No face detected! If you are sure there are faces in your input, you may rerun the code several times until the face is detected. Sometimes the detector is unstable.')
|
|
t = list(shape.parts())
|
|
a = []
|
|
for tt in t:
|
|
a.append([tt.x, tt.y])
|
|
lm = np.array(a)
|
|
return lm
|
|
|
|
|
|
def align_face(filepath, predictor):
|
|
"""
|
|
:param filepath: str
|
|
:return: PIL Image
|
|
"""
|
|
|
|
lm = get_landmark(filepath, predictor)
|
|
if lm is None:
|
|
return None
|
|
|
|
lm_chin = lm[0: 17]
|
|
lm_eyebrow_left = lm[17: 22]
|
|
lm_eyebrow_right = lm[22: 27]
|
|
lm_nose = lm[27: 31]
|
|
lm_nostrils = lm[31: 36]
|
|
lm_eye_left = lm[36: 42]
|
|
lm_eye_right = lm[42: 48]
|
|
lm_mouth_outer = lm[48: 60]
|
|
lm_mouth_inner = lm[60: 68]
|
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0)
|
|
eye_right = np.mean(lm_eye_right, axis=0)
|
|
eye_avg = (eye_left + eye_right) * 0.5
|
|
eye_to_eye = eye_right - eye_left
|
|
mouth_left = lm_mouth_outer[0]
|
|
mouth_right = lm_mouth_outer[6]
|
|
mouth_avg = (mouth_left + mouth_right) * 0.5
|
|
eye_to_mouth = mouth_avg - eye_avg
|
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
|
x /= np.hypot(*x)
|
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
|
y = np.flipud(x) * [-1, 1]
|
|
c = eye_avg + eye_to_mouth * 0.1
|
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
|
qsize = np.hypot(*x) * 2
|
|
|
|
|
|
if type(filepath) == str:
|
|
img = PIL.Image.open(filepath)
|
|
else:
|
|
img = PIL.Image.fromarray(filepath)
|
|
|
|
output_size = 256
|
|
transform_size = 256
|
|
enable_padding = True
|
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5))
|
|
if shrink > 1:
|
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
|
img = img.resize(rsize, PIL.Image.ANTIALIAS)
|
|
quad /= shrink
|
|
qsize /= shrink
|
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3)
|
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
|
int(np.ceil(max(quad[:, 1]))))
|
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
|
|
min(crop[3] + border, img.size[1]))
|
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
|
img = img.crop(crop)
|
|
quad -= crop[0:2]
|
|
|
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
|
int(np.ceil(max(quad[:, 1]))))
|
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
|
|
max(pad[3] - img.size[1] + border, 0))
|
|
if enable_padding and max(pad) > border - 4:
|
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
|
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
|
h, w, _ = img.shape
|
|
y, x, _ = np.ogrid[:h, :w, :1]
|
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
|
|
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
|
|
blur = qsize * 0.02
|
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
|
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
|
|
quad += pad[:2]
|
|
|
|
|
|
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
|
|
if output_size < transform_size:
|
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
|
|
|
|
|
|
return img
|
|
|
|
|
|
def chunks(lst, n):
|
|
"""Yield successive n-sized chunks from lst."""
|
|
for i in range(0, len(lst), n):
|
|
yield lst[i:i + n]
|
|
|
|
|
|
def extract_on_paths(file_paths):
|
|
predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH)
|
|
pid = mp.current_process().name
|
|
print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths)))
|
|
tot_count = len(file_paths)
|
|
count = 0
|
|
for file_path, res_path in file_paths:
|
|
count += 1
|
|
if count % 100 == 0:
|
|
print('{} done with {}/{}'.format(pid, count, tot_count))
|
|
try:
|
|
res = align_face(file_path, predictor)
|
|
res = res.convert('RGB')
|
|
os.makedirs(os.path.dirname(res_path), exist_ok=True)
|
|
res.save(res_path)
|
|
except Exception:
|
|
continue
|
|
print('\tDone!')
|
|
|
|
|
|
def parse_args():
|
|
parser = ArgumentParser(add_help=False)
|
|
parser.add_argument('--num_threads', type=int, default=1)
|
|
parser.add_argument('--root_path', type=str, default='')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def run(args):
|
|
root_path = args.root_path
|
|
out_crops_path = root_path + '_crops'
|
|
if not os.path.exists(out_crops_path):
|
|
os.makedirs(out_crops_path, exist_ok=True)
|
|
|
|
file_paths = []
|
|
for root, dirs, files in os.walk(root_path):
|
|
for file in files:
|
|
file_path = os.path.join(root, file)
|
|
fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path))
|
|
res_path = '{}.jpg'.format(os.path.splitext(fname)[0])
|
|
if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path):
|
|
continue
|
|
file_paths.append((file_path, res_path))
|
|
|
|
file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads))))
|
|
print(len(file_chunks))
|
|
pool = mp.Pool(args.num_threads)
|
|
print('Running on {} paths\nHere we goooo'.format(len(file_paths)))
|
|
tic = time.time()
|
|
pool.map(extract_on_paths, file_chunks)
|
|
toc = time.time()
|
|
print('Mischief managed in {}s'.format(toc - tic))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
run(args)
|
|
|