|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module
|
|
|
|
from model.encoder.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE
|
|
from model.stylegan.model import EqualLinear
|
|
|
|
|
|
class GradualStyleBlock(Module):
|
|
def __init__(self, in_c, out_c, spatial):
|
|
super(GradualStyleBlock, self).__init__()
|
|
self.out_c = out_c
|
|
self.spatial = spatial
|
|
num_pools = int(np.log2(spatial))
|
|
modules = []
|
|
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
|
|
nn.LeakyReLU()]
|
|
for i in range(num_pools - 1):
|
|
modules += [
|
|
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
|
|
nn.LeakyReLU()
|
|
]
|
|
self.convs = nn.Sequential(*modules)
|
|
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
|
|
|
|
def forward(self, x):
|
|
x = self.convs(x)
|
|
x = x.view(-1, self.out_c)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class GradualStyleEncoder(Module):
|
|
def __init__(self, num_layers, mode='ir', opts=None):
|
|
super(GradualStyleEncoder, self).__init__()
|
|
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
|
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
|
blocks = get_blocks(num_layers)
|
|
if mode == 'ir':
|
|
unit_module = bottleneck_IR
|
|
elif mode == 'ir_se':
|
|
unit_module = bottleneck_IR_SE
|
|
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
|
BatchNorm2d(64),
|
|
PReLU(64))
|
|
modules = []
|
|
for block in blocks:
|
|
for bottleneck in block:
|
|
modules.append(unit_module(bottleneck.in_channel,
|
|
bottleneck.depth,
|
|
bottleneck.stride))
|
|
self.body = Sequential(*modules)
|
|
|
|
self.styles = nn.ModuleList()
|
|
self.style_count = opts.n_styles
|
|
self.coarse_ind = 3
|
|
self.middle_ind = 7
|
|
for i in range(self.style_count):
|
|
if i < self.coarse_ind:
|
|
style = GradualStyleBlock(512, 512, 16)
|
|
elif i < self.middle_ind:
|
|
style = GradualStyleBlock(512, 512, 32)
|
|
else:
|
|
style = GradualStyleBlock(512, 512, 64)
|
|
self.styles.append(style)
|
|
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
|
|
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
|
|
|
|
def _upsample_add(self, x, y):
|
|
'''Upsample and add two feature maps.
|
|
Args:
|
|
x: (Variable) top feature map to be upsampled.
|
|
y: (Variable) lateral feature map.
|
|
Returns:
|
|
(Variable) added feature map.
|
|
Note in PyTorch, when input size is odd, the upsampled feature map
|
|
with `F.upsample(..., scale_factor=2, mode='nearest')`
|
|
maybe not equal to the lateral feature map size.
|
|
e.g.
|
|
original input size: [N,_,15,15] ->
|
|
conv2d feature map size: [N,_,8,8] ->
|
|
upsampled feature map size: [N,_,16,16]
|
|
So we choose bilinear upsample which supports arbitrary output sizes.
|
|
'''
|
|
_, _, H, W = y.size()
|
|
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
|
|
|
|
def forward(self, x):
|
|
x = self.input_layer(x)
|
|
|
|
latents = []
|
|
modulelist = list(self.body._modules.values())
|
|
for i, l in enumerate(modulelist):
|
|
x = l(x)
|
|
if i == 6:
|
|
c1 = x
|
|
elif i == 20:
|
|
c2 = x
|
|
elif i == 23:
|
|
c3 = x
|
|
|
|
for j in range(self.coarse_ind):
|
|
latents.append(self.styles[j](c3))
|
|
|
|
p2 = self._upsample_add(c3, self.latlayer1(c2))
|
|
for j in range(self.coarse_ind, self.middle_ind):
|
|
latents.append(self.styles[j](p2))
|
|
|
|
p1 = self._upsample_add(p2, self.latlayer2(c1))
|
|
for j in range(self.middle_ind, self.style_count):
|
|
latents.append(self.styles[j](p1))
|
|
|
|
out = torch.stack(latents, dim=1)
|
|
return out
|
|
|
|
|
|
class BackboneEncoderUsingLastLayerIntoW(Module):
|
|
def __init__(self, num_layers, mode='ir', opts=None):
|
|
super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
|
|
print('Using BackboneEncoderUsingLastLayerIntoW')
|
|
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
|
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
|
blocks = get_blocks(num_layers)
|
|
if mode == 'ir':
|
|
unit_module = bottleneck_IR
|
|
elif mode == 'ir_se':
|
|
unit_module = bottleneck_IR_SE
|
|
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
|
BatchNorm2d(64),
|
|
PReLU(64))
|
|
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
|
|
self.linear = EqualLinear(512, 512, lr_mul=1)
|
|
modules = []
|
|
for block in blocks:
|
|
for bottleneck in block:
|
|
modules.append(unit_module(bottleneck.in_channel,
|
|
bottleneck.depth,
|
|
bottleneck.stride))
|
|
self.body = Sequential(*modules)
|
|
|
|
def forward(self, x):
|
|
x = self.input_layer(x)
|
|
x = self.body(x)
|
|
x = self.output_pool(x)
|
|
x = x.view(-1, 512)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class BackboneEncoderUsingLastLayerIntoWPlus(Module):
|
|
def __init__(self, num_layers, mode='ir', opts=None):
|
|
super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__()
|
|
print('Using BackboneEncoderUsingLastLayerIntoWPlus')
|
|
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
|
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
|
blocks = get_blocks(num_layers)
|
|
if mode == 'ir':
|
|
unit_module = bottleneck_IR
|
|
elif mode == 'ir_se':
|
|
unit_module = bottleneck_IR_SE
|
|
self.n_styles = opts.n_styles
|
|
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
|
BatchNorm2d(64),
|
|
PReLU(64))
|
|
self.output_layer_2 = Sequential(BatchNorm2d(512),
|
|
torch.nn.AdaptiveAvgPool2d((7, 7)),
|
|
Flatten(),
|
|
Linear(512 * 7 * 7, 512))
|
|
self.linear = EqualLinear(512, 512 * self.n_styles, lr_mul=1)
|
|
modules = []
|
|
for block in blocks:
|
|
for bottleneck in block:
|
|
modules.append(unit_module(bottleneck.in_channel,
|
|
bottleneck.depth,
|
|
bottleneck.stride))
|
|
self.body = Sequential(*modules)
|
|
|
|
def forward(self, x):
|
|
x = self.input_layer(x)
|
|
x = self.body(x)
|
|
x = self.output_layer_2(x)
|
|
x = self.linear(x)
|
|
x = x.view(-1, self.n_styles, 512)
|
|
return x
|
|
|