Rehman1603 commited on
Commit
df95991
·
verified ·
1 Parent(s): e9ffa52

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -33
app.py CHANGED
@@ -1,22 +1,24 @@
1
  import gradio as gr
 
2
  import os
3
- from langchain import PromptTemplate, LLMChain
 
4
  from langchain_together import Together
 
5
  import pdfplumber
 
6
 
7
- # Set the API key
8
  os.environ['TOGETHER_API_KEY'] = "c2f52626b97118b71c0c36f66eda4f5957c8fc475e760c3d72f98ba07d3ed3b5"
9
 
10
- def extract_text_from_pdf(pdf_file, max_pages=16):
11
- text = ""
12
- with pdfplumber.open(pdf_file) as pdf:
13
  for i, page in enumerate(pdf.pages):
14
  if i >= max_pages:
15
  break
16
  text += page.extract_text() + "\n"
17
- return text
18
 
19
- def Bot(text, question):
20
  chat_template = """
21
  Based on the provided context: {text}
22
  Please answer the following question: {Questions}
@@ -32,7 +34,7 @@ def Bot(text, question):
32
  try:
33
  response = Generated_chat.invoke({
34
  "text": text,
35
- "Questions": question
36
  })
37
 
38
  response_text = response['text']
@@ -52,33 +54,34 @@ def Bot(text, question):
52
  except Exception as e:
53
  return f"Error in generating response: {e}"
54
 
55
- def ChatBot(history, document, question):
56
- greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"]
57
- question_lower = question.lower().strip()
58
- if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
59
- return history + [("User", question), ("Bot", "Hello! How can I assist you with the document today?")]
 
 
 
 
 
 
 
60
 
61
- # Extract text from the uploaded PDF document
62
- text = extract_text_from_pdf(document)
63
-
64
- # Generate the bot response based on the question and extracted text
65
- response = Bot(text, question)
66
-
67
- # Update chat history with the user's question and bot's response
68
- history.append(("User", question))
69
- history.append(("Bot", response))
70
-
71
- return history
72
 
73
- # Set up the Gradio interface using Blocks
74
- with gr.Blocks() as iface:
75
- chatbot = gr.Chatbot()
76
- document = gr.File(label="Upload PDF Document", type="filepath")
77
- question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
78
 
79
- def respond(history, document, question):
80
- return ChatBot(history, document, question)
81
 
82
- question.submit(respond, [chatbot, document, question], chatbot)
 
 
 
 
 
83
 
84
- iface.launch(debug=True)
 
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  import os
4
+ from langchain import PromptTemplate
5
+ from langchain import LLMChain
6
  from langchain_together import Together
7
+ import re
8
  import pdfplumber
9
+ # Set the API key with double quotes
10
 
 
11
  os.environ['TOGETHER_API_KEY'] = "c2f52626b97118b71c0c36f66eda4f5957c8fc475e760c3d72f98ba07d3ed3b5"
12
 
13
+ text = ""
14
+ max_pages = 7
15
+ with pdfplumber.open("Diabetes Type 1.pdf") as pdf:
16
  for i, page in enumerate(pdf.pages):
17
  if i >= max_pages:
18
  break
19
  text += page.extract_text() + "\n"
 
20
 
21
+ def Bot(Questions):
22
  chat_template = """
23
  Based on the provided context: {text}
24
  Please answer the following question: {Questions}
 
34
  try:
35
  response = Generated_chat.invoke({
36
  "text": text,
37
+ "Questions": Questions
38
  })
39
 
40
  response_text = response['text']
 
54
  except Exception as e:
55
  return f"Error in generating response: {e}"
56
 
57
+ def ChatBot(Questions):
58
+ greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"]
59
+ # Check if the input question is a greeting
60
+ question_lower = Questions.lower().strip()
61
+ if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
62
+ return "Hello! How can I assist you with the document today?"
63
+ else:
64
+ response=Bot(Questions)
65
+ print(response)
66
+ return response.translate(str.maketrans('', '', '\n'))
67
+ # text_embedding = model.encode(text, convert_to_tensor=True)
68
+ # statement_embedding = model.encode(statement, convert_to_tensor=True)
69
 
70
+ # # Compute the cosine similarity between the embeddings
71
+ # similarity = util.pytorch_cos_sim(text_embedding, statement_embedding)
 
 
 
 
 
 
 
 
 
72
 
73
+ # # Print the similarity score
74
+ # print(f"Cosine similarity: {similarity.item()}")
 
 
 
75
 
76
+ # # Define a threshold for considering the statement as related
77
+ # threshold = 0.7
78
 
79
+ # if similarity.item() > threshold:
80
+ # response=Bot(Questions)
81
+ # return response
82
+ # else:
83
+ # response="The statement is not related to the text."
84
+ # return response
85
 
86
+ iface = gr.Interface(fn=ChatBot, inputs="text", outputs="text", title="Chatbot")
87
+ iface.launch(debug=True)