Rehman1603 commited on
Commit
7750ed7
·
verified ·
1 Parent(s): 1582085

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ # Load the model and tokenizer from Hugging Face
6
+ model_name = "Rehman1603/airline_guidenece" # Replace with your Hugging Face model name
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
9
+
10
+ # Prepare the model for inference
11
+ model.eval()
12
+
13
+ # Define the Alpaca prompt format
14
+ alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
15
+
16
+ ### Response:
17
+ {}"""
18
+
19
+ def chat_with_model(instruction):
20
+ # Format the input with the Alpaca prompt
21
+ formatted_input = alpaca_prompt.format(instruction)
22
+
23
+ # Tokenize the input
24
+ inputs = tokenizer(
25
+ formatted_input,
26
+ return_tensors="pt",
27
+ ).to("cuda")
28
+
29
+ # Generate the response
30
+ outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
31
+ decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
32
+
33
+ # Extract the response part after "### Response:"
34
+ response_start = decoded_output.find("### Response:") + len("### Response:")
35
+ response_text = decoded_output[response_start:].strip()
36
+
37
+ return response_text
38
+
39
+ # Create a Gradio interface
40
+ interface = gr.Interface(
41
+ fn=chat_with_model,
42
+ inputs=gr.Textbox(lines=2, placeholder="Enter your instruction here..."),
43
+ outputs="text",
44
+ title="Airline Guidance Chatbot",
45
+ description="Ask questions about airline guidance and get responses from the model.",
46
+ )
47
+
48
+ # Launch the Gradio app
49
+ interface.launch()