import gradio as gr import pandas as pd from sentiment_analysis.vader_analyzer import analyze_sentiment_vader from sentiment_analysis.transformers_analyzer import analyze_sentiment_transformers def analyze_reviews(file, use_vader, use_transformers): # Read the uploaded file if file.name.endswith(".csv"): df = pd.read_csv(file) elif file.name.endswith(".xlsx"): df = pd.read_excel(file) else: return "Please upload a CSV or Excel file." # Check the number of entries and truncate if needed if len(df) > 1000: df = df.head(1000) error_message = "The file contains more than 1,000 entries. Only the first 1,000 reviews are processed." else: error_message = "No Errors Found" # Ensure the "review" column exists df.columns = df.columns.str.lower() if 'review' not in df.columns: return "Please make sure the file has a 'review' column with review text." # Apply selected sentiment analysis models if use_vader: vader_results = analyze_sentiment_vader(df["review"]) df = pd.concat([df, vader_results], axis=1) if use_transformers: transformers_results = analyze_sentiment_transformers(df["review"]) df = pd.concat([df, transformers_results], axis=1) # Save the result to a CSV file output_file = "sentiment_analysis_results.csv" df.to_csv(output_file, index=False) return output_file, error_message, df.head() # Return the output file, error message, and preview # Define Gradio interface interface = gr.Interface( fn=analyze_reviews, inputs=[ gr.File(label="Upload your review file (CSV or XLSX)"), gr.Radio(["Vader", "Transformers"], label="Select Sentiment Analysis Model"), ], outputs=[ gr.File(label="Download CSV"), gr.Textbox(label="Error Message"), gr.Dataframe(label="Data Preview"), ], title="Bulk Sentiment Analysis for Reviews", description="Upload a file with a 'review' column to analyze sentiment using Vader and Transformers models." ) # Launch the Gradio app interface.launch(share=True)