import torch import torchaudio import gradio as gr import spaces from zonos.model import Zonos from zonos.conditioning import make_cond_dict, supported_language_codes # We'll keep a global dictionary of loaded models to avoid reloading MODELS_CACHE = {} device = "cuda" banner_url = "https://huggingface.co/datasets/Steveeeeeeen/random_images/resolve/main/ZonosHeader.png" BANNER = f'
Banner
' def load_model(model_name: str): """ Loads or retrieves a cached Zonos model, sets it to eval and bfloat16. """ global MODELS_CACHE if model_name not in MODELS_CACHE: print(f"Loading model: {model_name}") model = Zonos.from_pretrained(model_name, device=device) model = model.requires_grad_(False).eval() model.bfloat16() # optional if GPU supports bfloat16 MODELS_CACHE[model_name] = model print(f"Model loaded successfully: {model_name}") return MODELS_CACHE[model_name] @spaces.GPU(duration=90) def tts(text, speaker_audio, selected_language, model_choice): """ text: str (Text prompt to synthesize) speaker_audio: (sample_rate, numpy_array) from Gradio if type="numpy" selected_language: str (language code) model_choice: str (which Zonos model to use, e.g., "Zyphra/Zonos-v0.1-hybrid") Returns (sample_rate, waveform) for Gradio audio output. """ # Load the selected model model = load_model(model_choice) if not text: return None if speaker_audio is None: return None # Gradio gives audio in the format (sample_rate, numpy_array) sr, wav_np = speaker_audio # Convert to Torch tensor: shape (1, num_samples) wav_tensor = torch.from_numpy(wav_np).unsqueeze(0).float() if wav_tensor.dim() == 2 and wav_tensor.shape[0] > wav_tensor.shape[1]: # If shape is transposed, fix it wav_tensor = wav_tensor.T # Get speaker embedding with torch.no_grad(): spk_embedding = model.make_speaker_embedding(wav_tensor, sr) spk_embedding = spk_embedding.to(device, dtype=torch.bfloat16) # Prepare conditioning dictionary cond_dict = make_cond_dict( text=text, speaker=spk_embedding, language=selected_language, device=device, ) conditioning = model.prepare_conditioning(cond_dict) # Generate codes with torch.no_grad(): codes = model.generate(conditioning) # Decode the codes into raw audio wav_out = model.autoencoder.decode(codes).cpu().detach().squeeze() sr_out = model.autoencoder.sampling_rate return (sr_out, wav_out.numpy()) def build_demo(): with gr.Blocks(theme='davehornik/Tealy') as demo: gr.HTML(BANNER, elem_id="banner") gr.Markdown("## Zonos-v0.1 TTS Demo") gr.Markdown( """ > **Zero-shot TTS with Voice Cloning**: Input text and a 10–30 second speaker sample to generate high-quality text-to-speech output. > **Audio Prefix Inputs**: Enhance speaker matching by adding an audio prefix to the text, enabling behaviors like whispering that are hard to achieve with voice cloning alone. > **Multilingual Support**: Supports English, Japanese, Chinese, French, and German. """ ) with gr.Row(): text_input = gr.Textbox( label="Text Prompt", value="Hello from Zonos!", lines=3 ) ref_audio_input = gr.Audio( label="Reference Audio (Speaker Cloning)", type="numpy" ) # Model dropdown model_dropdown = gr.Dropdown( label="Model Choice", choices=["Zyphra/Zonos-v0.1-transformer", "Zyphra/Zonos-v0.1-hybrid"], value="Zyphra/Zonos-v0.1-hybrid", interactive=True, ) # Language dropdown (you can filter or use all from supported_language_codes) language_dropdown = gr.Dropdown( label="Language Code", choices=supported_language_codes, value="en-us", interactive=True, ) generate_button = gr.Button("Generate") audio_output = gr.Audio(label="Synthesized Output", type="numpy") generate_button.click( fn=tts, inputs=[text_input, ref_audio_input, language_dropdown, model_dropdown], outputs=audio_output, ) return demo if __name__ == "__main__": demo_app = build_demo() demo_app.launch(server_name="0.0.0.0", server_port=7860, share=True)