File size: 2,862 Bytes
d93a410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright (c) 2022 Horizon Robotics. (authors: Binbin Zhang)
#               2022 Chengdong Liang (liangchengdong@mail.nwpu.edu.cn)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gradio as gr
import torch
from wenet.cli.model import load_model



def process_cat_embs(cat_embs):
    device = "cpu"
    cat_embs = torch.tensor(
        [float(c) for c in cat_embs.split(',')]).to(device)
    return cat_embs


def download_rev_models():
    # from huggingface_hub import hf_hub_download
    # import joblib

    # REPO_ID = "Revai/reginald"
    # FILENAME = "sklearn_model.joblib"

    # model = joblib.load(
    #     hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
    # )
    model_path = "/Users/natalie/NERD-2941/reginald/10.jit.zip"
    units_path = "/Users/natalie/NERD-2941/reginald/tk.units.txt"
    audio_path = "/Users/natalie/NERD-2941/rev-wenet/runtime/web/fdhc0_si1559.wav"
    cat_embs = "1,0"
    device = "cpu"
    cat_embs = process_cat_embs
    model = load_model(model_path, units_path)
    return model

model = download_rev_models()
    

def recognition(audio, style=0):
    if audio is None:
        return "Input Error! Please enter one audio!"
    # NOTE: model supports 16k sample_rate

    cat_embs = ','.join([str(s) for s in (1-style, style)])
    cat_embs = process_cat_embs(cat_embs)
    ans = model.transcribe(audio, cat_embs = cat_embs)

    if ans is None:
        return "ERROR! No text output! Please try again!"
    txt = ans['text']
    return txt


# input
inputs = [
    gr.inputs.Audio(source="microphone", type="filepath", label='Input audio'),
    gr.Slider(0, 1, value=0, label="Style", info="Choose between verbatim and NV"),
]

output = gr.outputs.Textbox(label="Output Text")

text = "Reginald Demo"

# description
description = (
    "This is a speech recognition demo that supports verbatim and non-verbatim transcription. Try recording an audio with disfluencies (ex: \'uh\', \'um\') and testing both transcription styles."  # noqa
)

article = (
    "<p style='text-align: center'>"
    "<a href='https://rev.com' target='_blank'>Github: Learn more about Rev</a>"  # noqa
    "</p>")

interface = gr.Interface(
    fn=recognition,
    inputs=inputs,
    outputs=output,
    title=text,
    description=description,
    article=article,
    theme='huggingface',
)

interface.launch(enable_queue=True)