|
import argparse |
|
import asyncio |
|
import json |
|
import time |
|
import threading |
|
import uuid |
|
import requests |
|
import torch |
|
import uvicorn |
|
import transformers |
|
|
|
from fastapi import FastAPI, Request, BackgroundTasks |
|
from fastapi.responses import StreamingResponse |
|
from functools import partial |
|
from transformers import TextIteratorStreamer |
|
from threading import Thread |
|
|
|
from .constants import WORKER_HEART_BEAT_INTERVAL |
|
from .utils import (build_logger, server_error_msg, pretty_print_semaphore) |
|
from .builder import load_pretrained_model |
|
from .mm_utils import process_images, load_image_from_base64, tokenizer_image_token, get_model_name_from_path, \ |
|
KeywordsStoppingCriteria |
|
from .constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN |
|
|
|
GB = 1 << 30 |
|
|
|
worker_id = str(uuid.uuid4())[:6] |
|
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") |
|
global_counter = 0 |
|
|
|
model_semaphore = None |
|
|
|
|
|
def heart_beat_worker(controller): |
|
while True: |
|
time.sleep(WORKER_HEART_BEAT_INTERVAL) |
|
controller.send_heart_beat() |
|
|
|
|
|
class ModelWorker: |
|
def __init__(self, controller_addr, worker_addr, |
|
worker_id, no_register, |
|
model_path, model_base, model_name, model_type, |
|
load_8bit, load_4bit, device): |
|
self.controller_addr = controller_addr |
|
self.worker_addr = worker_addr |
|
self.worker_id = worker_id |
|
if model_path.endswith("/"): |
|
model_path = model_path[:-1] |
|
if model_name is None: |
|
self.model_name = get_model_name_from_path(model_path) |
|
else: |
|
self.model_name = model_name |
|
|
|
self.device = device |
|
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") |
|
transformers.logging.disable_progress_bar() |
|
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model( |
|
model_path, model_base, self.model_name, model_type, load_8bit, load_4bit, device=self.device) |
|
self.is_multimodal = True |
|
|
|
if not no_register: |
|
self.register_to_controller() |
|
self.heart_beat_thread = threading.Thread( |
|
target=heart_beat_worker, args=(self,)) |
|
self.heart_beat_thread.start() |
|
|
|
def register_to_controller(self): |
|
logger.info("Register to controller") |
|
|
|
url = self.controller_addr + "/register_worker" |
|
data = { |
|
"worker_name": self.worker_addr, |
|
"check_heart_beat": True, |
|
"worker_status": self.get_status() |
|
} |
|
r = requests.post(url, json=data) |
|
assert r.status_code == 200 |
|
|
|
def send_heart_beat(self): |
|
logger.info(f"Send heart beat. Models: {[self.model_name]}. " |
|
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " |
|
f"global_counter: {global_counter}") |
|
|
|
url = self.controller_addr + "/receive_heart_beat" |
|
|
|
while True: |
|
try: |
|
ret = requests.post(url, json={ |
|
"worker_name": self.worker_addr, |
|
"queue_length": self.get_queue_length()}, timeout=5) |
|
exist = ret.json()["exist"] |
|
break |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"heart beat error: {e}") |
|
time.sleep(5) |
|
|
|
if not exist: |
|
self.register_to_controller() |
|
|
|
def get_queue_length(self): |
|
if model_semaphore is None: |
|
return 0 |
|
else: |
|
return args.limit_model_concurrency - model_semaphore._value + (len( |
|
model_semaphore._waiters) if model_semaphore._waiters is not None else 0) |
|
|
|
def get_status(self): |
|
return { |
|
"model_names": [self.model_name], |
|
"speed": 1, |
|
"queue_length": self.get_queue_length(), |
|
} |
|
|
|
@torch.inference_mode() |
|
def generate_stream(self, params): |
|
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor |
|
|
|
prompt = params["prompt"] |
|
ori_prompt = prompt |
|
images = params.get("images", None) |
|
num_image_tokens = 0 |
|
if images is not None and len(images) > 0 and self.is_multimodal: |
|
if len(images) > 0: |
|
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): |
|
raise ValueError("Number of images does not match number of <image> tokens in prompt") |
|
|
|
images = [load_image_from_base64(image) for image in images] |
|
images = process_images(images, image_processor, model.config) |
|
print(f"----> process_images {images}") |
|
print(f"----> process_images sum {torch.sum(images)}") |
|
if type(images) is list: |
|
images = [image.to(self.model.device, dtype=model.dtype) for image in images] |
|
else: |
|
images = images.to(self.model.device, dtype=model.dtype) |
|
|
|
replace_token = DEFAULT_IMAGE_TOKEN |
|
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) |
|
|
|
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches |
|
else: |
|
images = None |
|
image_args = {"images": images} |
|
else: |
|
images = None |
|
image_args = {} |
|
|
|
temperature = float(params.get("temperature", 1.0)) |
|
top_p = float(params.get("top_p", 1.0)) |
|
max_context_length = getattr(model.config, 'max_position_embeddings', 2048) |
|
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) |
|
stop_str = params.get("stop", None) |
|
do_sample = True if temperature > 0.001 else False |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to( |
|
self.device) |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) |
|
|
|
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) |
|
|
|
if max_new_tokens < 1: |
|
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", |
|
"error_code": 0}).encode() + b"\0" |
|
return |
|
print("max_new_tokens", max_new_tokens) |
|
print("start!") |
|
|
|
thread = Thread(target=model.generate, kwargs=dict( |
|
inputs=input_ids, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_new_tokens=max_new_tokens, |
|
streamer=streamer, |
|
stopping_criteria=[stopping_criteria], |
|
use_cache=True, |
|
**image_args |
|
)) |
|
thread.start() |
|
|
|
generated_text = ori_prompt |
|
for new_text in streamer: |
|
if generated_text and not generated_text.endswith(' '): |
|
generated_text += ' ' |
|
generated_text += new_text |
|
if generated_text.endswith(stop_str): |
|
generated_text = generated_text[:-len(stop_str)] |
|
logger.info(f"new_text: {new_text}") |
|
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" |
|
|
|
def generate_stream_gate(self, params): |
|
try: |
|
for x in self.generate_stream(params): |
|
yield x |
|
except ValueError as e: |
|
print("Caught ValueError:", e) |
|
ret = { |
|
"text": server_error_msg, |
|
"error_code": 1, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
except torch.cuda.CudaError as e: |
|
print("Caught torch.cuda.CudaError:", e) |
|
ret = { |
|
"text": server_error_msg, |
|
"error_code": 1, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
except Exception as e: |
|
print("Caught Unknown Error", e) |
|
ret = { |
|
"text": server_error_msg, |
|
"error_code": 1, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
def release_model_semaphore(fn=None): |
|
model_semaphore.release() |
|
if fn is not None: |
|
fn() |
|
|
|
|
|
@app.post("/worker_generate_stream") |
|
async def generate_stream(request: Request): |
|
global model_semaphore, global_counter |
|
global_counter += 1 |
|
params = await request.json() |
|
|
|
if model_semaphore is None: |
|
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) |
|
await model_semaphore.acquire() |
|
worker.send_heart_beat() |
|
generator = worker.generate_stream_gate(params) |
|
background_tasks = BackgroundTasks() |
|
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) |
|
return StreamingResponse(generator, background=background_tasks) |
|
|
|
|
|
@app.post("/worker_get_status") |
|
async def get_status(request: Request): |
|
return worker.get_status() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="localhost") |
|
parser.add_argument("--port", type=int, default=21002) |
|
parser.add_argument("--worker-address", type=str, |
|
default="http://localhost:21002") |
|
parser.add_argument("--controller-address", type=str, |
|
default="http://localhost:21001") |
|
parser.add_argument("--model-path", type=str, default=None) |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--model-name", type=str) |
|
parser.add_argument("--model-type", type=str, default=None) |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--multi-modal", action="store_true", |
|
help="Multimodal mode is automatically detected with model name.") |
|
parser.add_argument("--limit-model-concurrency", type=int, default=5) |
|
parser.add_argument("--stream-interval", type=int, default=1) |
|
parser.add_argument("--no-register", action="store_true") |
|
parser.add_argument("--load-8bit", action="store_true") |
|
parser.add_argument("--load-4bit", action="store_true") |
|
args = parser.parse_args() |
|
logger.info(f"args: {args}") |
|
|
|
if args.multi_modal: |
|
logger.warning("Multimodal mode is automatically detected with model name.") |
|
|
|
worker = ModelWorker(args.controller_address, |
|
args.worker_address, |
|
worker_id, |
|
args.no_register, |
|
args.model_path, |
|
args.model_base, |
|
args.model_name, |
|
args.model_type, |
|
args.load_8bit, |
|
args.load_4bit, |
|
args.device) |
|
|
|
log_config = uvicorn.config.LOGGING_CONFIG |
|
log_config['handlers']['default']['stream'] = 'ext://sys.stdout' |
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |