|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria |
|
from modeling_llava_qwen2 import LlavaQwen2ForCausalLM |
|
from threading import Thread |
|
import re |
|
import time |
|
from PIL import Image |
|
import torch |
|
import spaces |
|
import subprocess |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
torch.set_default_device('cuda') |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
'qnguyen3/nanoLLaVA', |
|
trust_remote_code=True) |
|
|
|
model = LlavaQwen2ForCausalLM.from_pretrained( |
|
'qnguyen3/nanoLLaVA', |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
trust_remote_code=True) |
|
|
|
model.to('cuda') |
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [] |
|
self.max_keyword_len = 0 |
|
for keyword in keywords: |
|
cur_keyword_ids = tokenizer(keyword).input_ids |
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: |
|
cur_keyword_ids = cur_keyword_ids[1:] |
|
if len(cur_keyword_ids) > self.max_keyword_len: |
|
self.max_keyword_len = len(cur_keyword_ids) |
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) |
|
self.tokenizer = tokenizer |
|
self.start_len = input_ids.shape[1] |
|
|
|
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) |
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] |
|
for keyword_id in self.keyword_ids: |
|
truncated_output_ids = output_ids[0, -keyword_id.shape[0]:] |
|
if torch.equal(truncated_output_ids, keyword_id): |
|
return True |
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
outputs = [] |
|
for i in range(output_ids.shape[0]): |
|
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) |
|
return all(outputs) |
|
|
|
|
|
@spaces.GPU |
|
def bot_streaming(message, history): |
|
messages = [] |
|
if message["files"]: |
|
image = message["files"][-1]["path"] |
|
else: |
|
for i, hist in enumerate(history): |
|
if type(hist[0])==tuple: |
|
image = hist[0][0] |
|
image_turn = i |
|
|
|
if len(history) > 0 and image is not None: |
|
messages.append({"role": "user", "content": f'<image>\n{history[1][0]}'}) |
|
messages.append({"role": "assistant", "content": history[1][1] }) |
|
for human, assistant in history[2:]: |
|
messages.append({"role": "user", "content": human }) |
|
messages.append({"role": "assistant", "content": assistant }) |
|
messages.append({"role": "user", "content": message['text']}) |
|
elif len(history) > 0 and image is None: |
|
for human, assistant in history: |
|
messages.append({"role": "user", "content": human }) |
|
messages.append({"role": "assistant", "content": assistant }) |
|
messages.append({"role": "user", "content": message['text']}) |
|
elif len(history) == 0 and image is not None: |
|
messages.append({"role": "user", "content": f"<image>\n{message['text']}"}) |
|
elif len(history) == 0 and image is None: |
|
messages.append({"role": "user", "content": message['text'] }) |
|
|
|
|
|
|
|
image = Image.open(image).convert("RGB") |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True) |
|
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] |
|
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0) |
|
stop_str = '<|im_end|>' |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype) |
|
generation_kwargs = dict(input_ids=input_ids.to('cuda'), |
|
images=image_tensor.to('cuda'), |
|
streamer=streamer, max_new_tokens=128, |
|
stopping_criteria=[stopping_criteria], temperature=0.01) |
|
generated_text = "" |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
text_prompt =f"<|im_start|>user\n{message['text']}<|im_end|>" |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
|
|
buffer += new_text |
|
|
|
generated_text_without_prompt = buffer[:] |
|
time.sleep(0.04) |
|
yield generated_text_without_prompt |
|
|
|
|
|
demo = gr.ChatInterface(fn=bot_streaming, title="🚀nanoLLaVA", examples=[{"text": "Describe the image in detail", "files":["./demo_1.jpg"]}, |
|
{"text": "What does the text say?", "files":["./demo_2.jpeg"]}], |
|
description="Try [nanoLLaVA](https://huggingface.co/qnguyen3/nanoLLaVA) in this demo. Built on top of [Quyen-SE-v0.1](https://huggingface.co/vilm/Quyen-SE-v0.1) (Qwen1.5-0.5B) and [Google SigLIP-400M](https://huggingface.co/google/siglip-so400m-patch14-384). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", |
|
stop_btn="Stop Generation", multimodal=True) |
|
demo.queue().launch() |