|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from threading import Thread |
|
import re |
|
import time |
|
from PIL import Image |
|
import torch |
|
import spaces |
|
import subprocess |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
'qnguyen3/nanoLLaVA', |
|
trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
'qnguyen3/nanoLLaVA', |
|
torch_dtype=torch.float16, |
|
device_map='auto', |
|
trust_remote_code=True) |
|
model.to("cuda:0") |
|
|
|
@spaces.GPU |
|
def bot_streaming(message, history): |
|
chat_history = [] |
|
if message["files"]: |
|
image = message["files"][-1]["path"] |
|
else: |
|
for i, hist in enumerate(history): |
|
if type(hist[0])==tuple: |
|
image = hist[0][0] |
|
image_turn = i |
|
|
|
if len(history) > 0 and image is not None: |
|
chat_history.append({"role": "user", "content": f'<image>\n{history[1][0]}'}) |
|
chat_history.append({"role": "assistant", "content": history[1][1] }) |
|
for human, assistant in history[2:]: |
|
chat_history.append({"role": "user", "content": human }) |
|
chat_history.append({"role": "assistant", "content": assistant }) |
|
chat_history.append({"role": "user", "content": message['text']}) |
|
elif len(history) > 0 and image is None: |
|
for human, assistant in history: |
|
chat_history.append({"role": "user", "content": human }) |
|
chat_history.append({"role": "assistant", "content": assistant }) |
|
chat_history.append({"role": "user", "content": message['text']}) |
|
elif len(history) == 0 and image is not None: |
|
chat_history.append({"role": "user", "content": f"<image>\n{message['text']}"}) |
|
elif len(history) == 0 and image is None: |
|
chat_history.append({"role": "user", "content": message['text'] }) |
|
|
|
|
|
|
|
prompt=f"[INST] <image>\n{message['text']} [/INST]" |
|
image = Image.open(image).convert("RGB") |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True) |
|
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] |
|
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0) |
|
streamer = TextIteratorStreamer(input_ids, **{"skip_special_tokens": True}) |
|
image = Image.open(image) |
|
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype) |
|
generation_kwargs = dict(inputs, images=image_tensor, streamer=streamer, max_new_tokens=100) |
|
generated_text = "" |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
text_prompt =f"<|im_start|>user\n{message['text']}<|im_end|>" |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
|
|
buffer += new_text |
|
|
|
generated_text_without_prompt = buffer[len(text_prompt):] |
|
time.sleep(0.04) |
|
yield generated_text_without_prompt |
|
|
|
|
|
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA NeXT", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, |
|
{"text": "How to make this pastry?", "files":["./baklava.png"]}], |
|
description="Try [LLaVA NeXT](https://huggingface.co/docs/transformers/main/en/model_doc/llava_next) in this demo (more specifically, the [Mistral-7B variant](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", |
|
stop_btn="Stop Generation", multimodal=True) |
|
demo.launch(debug=True) |