|
|
|
|
|
|
|
ARG USE_CUDA=false |
|
ARG USE_OLLAMA=false |
|
|
|
ARG USE_CUDA_VER=cu121 |
|
|
|
|
|
|
|
|
|
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 |
|
ARG USE_RERANKING_MODEL="" |
|
ARG BUILD_HASH=dev-build |
|
|
|
ARG UID=0 |
|
ARG GID=0 |
|
|
|
|
|
FROM --platform=$BUILDPLATFORM node:22-alpine3.20 AS build |
|
ARG BUILD_HASH |
|
|
|
WORKDIR /app |
|
|
|
COPY package.json package-lock.json ./ |
|
RUN npm ci |
|
|
|
COPY . . |
|
ENV APP_BUILD_HASH=${BUILD_HASH} |
|
RUN npm run build |
|
|
|
|
|
FROM python:3.11-slim-bookworm AS base |
|
|
|
|
|
ARG USE_CUDA |
|
ARG USE_OLLAMA |
|
ARG USE_CUDA_VER |
|
ARG USE_EMBEDDING_MODEL |
|
ARG USE_RERANKING_MODEL |
|
ARG UID |
|
ARG GID |
|
|
|
|
|
ENV ENV=prod \ |
|
PORT=8080 \ |
|
# pass build args to the build |
|
USE_OLLAMA_DOCKER=${USE_OLLAMA} \ |
|
USE_CUDA_DOCKER=${USE_CUDA} \ |
|
USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \ |
|
USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} \ |
|
USE_RERANKING_MODEL_DOCKER=${USE_RERANKING_MODEL} |
|
|
|
|
|
ENV OLLAMA_BASE_URL="/ollama" \ |
|
OPENAI_API_BASE_URL="" |
|
|
|
|
|
ENV OPENAI_API_KEY="" \ |
|
WEBUI_SECRET_KEY="" \ |
|
SCARF_NO_ANALYTICS=true \ |
|
DO_NOT_TRACK=true \ |
|
ANONYMIZED_TELEMETRY=false |
|
|
|
|
|
|
|
ENV WHISPER_MODEL="base" \ |
|
WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models" |
|
|
|
|
|
ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \ |
|
RAG_RERANKING_MODEL="$USE_RERANKING_MODEL_DOCKER" \ |
|
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" |
|
|
|
|
|
ENV HF_HOME="/app/backend/data/cache/embedding/models" |
|
|
|
|
|
|
|
|
|
|
|
|
|
WORKDIR /app/backend |
|
|
|
ENV HOME=/root |
|
|
|
RUN if [ $UID -ne 0 ]; then \ |
|
if [ $GID -ne 0 ]; then \ |
|
addgroup --gid $GID app; \ |
|
fi; \ |
|
adduser --uid $UID --gid $GID --home $HOME --disabled-password --no-create-home app; \ |
|
fi |
|
|
|
RUN mkdir -p $HOME/.cache/chroma |
|
RUN echo -n 00000000-0000-0000-0000-000000000000 > $HOME/.cache/chroma/telemetry_user_id |
|
|
|
|
|
RUN chown -R $UID:$GID /app $HOME |
|
|
|
RUN if [ "$USE_OLLAMA" = "true" ]; then \ |
|
apt-get update && \ |
|
# Install pandoc and netcat |
|
apt-get install -y --no-install-recommends git build-essential pandoc netcat-openbsd curl && \ |
|
apt-get install -y --no-install-recommends gcc python3-dev && \ |
|
# for RAG OCR |
|
apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \ |
|
# install helper tools |
|
apt-get install -y --no-install-recommends curl jq && \ |
|
# install ollama |
|
curl -fsSL https://ollama.com/install.sh | sh && \ |
|
# cleanup |
|
rm -rf /var/lib/apt/lists/*; \ |
|
else \ |
|
apt-get update && \ |
|
# Install pandoc, netcat and gcc |
|
apt-get install -y --no-install-recommends git build-essential pandoc gcc netcat-openbsd curl jq && \ |
|
apt-get install -y --no-install-recommends gcc python3-dev && \ |
|
# for RAG OCR |
|
apt-get install -y --no-install-recommends ffmpeg libsm6 libxext6 && \ |
|
# cleanup |
|
rm -rf /var/lib/apt/lists/*; \ |
|
fi |
|
|
|
# install python dependencies |
|
COPY --chown=$UID:$GID ./backend/requirements.txt ./requirements.txt |
|
|
|
RUN pip3 install uv && \ |
|
if [ "$USE_CUDA" = "true" ]; then \ |
|
# If you use CUDA the whisper and embedding model will be downloaded on first use |
|
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \ |
|
uv pip install --system -r requirements.txt --no-cache-dir && \ |
|
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \ |
|
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \ |
|
else \ |
|
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \ |
|
uv pip install --system -r requirements.txt --no-cache-dir && \ |
|
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \ |
|
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \ |
|
fi; \ |
|
chown -R $UID:$GID /app/backend/data/ |
|
|
|
|
|
|
|
# copy embedding weight from build |
|
# RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2 |
|
# COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx |
|
|
|
# copy built frontend files |
|
COPY --chown=$UID:$GID --from=build /app/build /app/build |
|
COPY --chown=$UID:$GID --from=build /app/CHANGELOG.md /app/CHANGELOG.md |
|
COPY --chown=$UID:$GID --from=build /app/package.json /app/package.json |
|
|
|
# copy backend files |
|
COPY --chown=$UID:$GID ./backend . |
|
|
|
EXPOSE 8080 |
|
|
|
HEALTHCHECK CMD curl --silent --fail http://localhost:${PORT:-8080}/health | jq -ne 'input.status == true' || exit 1 |
|
|
|
USER $UID:$GID |
|
|
|
ARG BUILD_HASH |
|
ENV WEBUI_BUILD_VERSION=${BUILD_HASH} |
|
ENV DOCKER=true |
|
|
|
CMD [ "bash", "start.sh"] |
|
|