Spaces:
Runtime error
Runtime error
merge CLIPSeg demo
Browse files
app.py
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
from PIL import Image
|
4 |
import os
|
5 |
import torch
|
|
|
|
|
|
|
6 |
from diffusers import DiffusionPipeline
|
|
|
7 |
|
8 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
9 |
|
|
|
|
|
|
|
|
|
10 |
pipe = DiffusionPipeline.from_pretrained(
|
11 |
"Fantasy-Studio/Paint-by-Example",
|
12 |
torch_dtype=torch.float16,
|
@@ -14,14 +19,25 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
14 |
pipe = pipe.to("cuda")
|
15 |
|
16 |
|
17 |
-
def
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
with open(file_path, 'r', encoding='utf-8') as f:
|
21 |
content = f.read()
|
22 |
-
|
23 |
return content
|
24 |
|
|
|
25 |
def predict(dict, reference, scale, seed, step):
|
26 |
width, height = dict["image"].size
|
27 |
if width < height:
|
@@ -123,8 +139,7 @@ with image_blocks as demo:
|
|
123 |
community_icon = gr.HTML(community_icon_html, visible=True)
|
124 |
loading_icon = gr.HTML(loading_icon_html, visible=True)
|
125 |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
126 |
-
|
127 |
-
|
128 |
with gr.Row():
|
129 |
with gr.Column():
|
130 |
gr.Examples(image_list, inputs=[image],label="Examples - Source Image",examples_per_page=12)
|
@@ -134,8 +149,6 @@ with image_blocks as demo:
|
|
134 |
btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button])
|
135 |
share_button.click(None, [], [], _js=share_js)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
gr.HTML(
|
140 |
"""
|
141 |
<div class="footer">
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
8 |
|
9 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
10 |
|
11 |
+
|
12 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
13 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
14 |
+
|
15 |
pipe = DiffusionPipeline.from_pretrained(
|
16 |
"Fantasy-Studio/Paint-by-Example",
|
17 |
torch_dtype=torch.float16,
|
|
|
19 |
pipe = pipe.to("cuda")
|
20 |
|
21 |
|
22 |
+
def process_image(image, prompt):
|
23 |
+
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt")
|
24 |
+
|
25 |
+
# predict
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(**inputs)
|
28 |
+
preds = outputs.logits
|
29 |
+
|
30 |
+
filename = f"mask.png"
|
31 |
+
plt.imsave(filename, torch.sigmoid(preds))
|
32 |
+
return Image.open("mask.png").convert("RGB")
|
33 |
+
|
34 |
+
|
35 |
+
def read_content(file_path):
|
36 |
with open(file_path, 'r', encoding='utf-8') as f:
|
37 |
content = f.read()
|
|
|
38 |
return content
|
39 |
|
40 |
+
|
41 |
def predict(dict, reference, scale, seed, step):
|
42 |
width, height = dict["image"].size
|
43 |
if width < height:
|
|
|
139 |
community_icon = gr.HTML(community_icon_html, visible=True)
|
140 |
loading_icon = gr.HTML(loading_icon_html, visible=True)
|
141 |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
142 |
+
|
|
|
143 |
with gr.Row():
|
144 |
with gr.Column():
|
145 |
gr.Examples(image_list, inputs=[image],label="Examples - Source Image",examples_per_page=12)
|
|
|
149 |
btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button])
|
150 |
share_button.click(None, [], [], _js=share_js)
|
151 |
|
|
|
|
|
152 |
gr.HTML(
|
153 |
"""
|
154 |
<div class="footer">
|