|
import glob |
|
import json |
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
|
|
import dateutil |
|
import numpy as np |
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, DisclosedType |
|
from src.submission.check_validity import is_model_on_hub |
|
|
|
import pdb |
|
import yaml |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.""" |
|
|
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: dict |
|
precision: Precision = Precision.Unknown |
|
model_type: ModelType = ModelType.Unknown |
|
weight_type: WeightType = WeightType.Original |
|
architecture: str = "Unknown" |
|
license: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
base_model: str = None |
|
training_codebase: str = None |
|
training_data: str = None |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
config = data.get("config") |
|
|
|
additional_info = { |
|
"license": config.get("license", None), |
|
"num_params": config.get("params", None), |
|
"base_model": config.get("base_model", None), |
|
"model_type": ModelType.from_str(config.get("model_type", "")), |
|
"weight_type": WeightType.from_str(config.get("weight_type", "")), |
|
"training_codebase": DisclosedType.from_str(config.get("training_codebase", "")), |
|
"training_data": DisclosedType.from_str(config.get("training_data", "")), |
|
} |
|
|
|
|
|
precision = Precision.from_str(config.get("model_dtype")) |
|
|
|
|
|
org_and_model = config.get("model_name", data.get("model_name", config.get("model_args", None))) |
|
org_and_model = org_and_model.split("/", 1) |
|
|
|
if len(org_and_model) == 1: |
|
org = None |
|
model = org_and_model[0] |
|
result_key = f"{model}_{precision.value.name}" |
|
else: |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
result_key = f"{org}_{model}_{precision.value.name}" |
|
full_model = "/".join(org_and_model) |
|
|
|
still_on_hub, _, model_config = is_model_on_hub( |
|
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False |
|
) |
|
architecture = "?" |
|
if model_config is not None: |
|
architectures = getattr(model_config, "architectures", None) |
|
if architectures: |
|
architecture = ";".join(architectures) |
|
|
|
|
|
|
|
|
|
results = {} |
|
for task in Tasks: |
|
task = task.value |
|
|
|
|
|
accs = np.array( |
|
[ |
|
v.get(task.metric, None) if task.higher_is_better else 1 - v.get(task.metric, None) |
|
for k, v in data["results"].items() |
|
if task.benchmark == k |
|
] |
|
) |
|
|
|
if accs.size == 0 or any([acc is None for acc in accs]): |
|
continue |
|
|
|
mean_acc = np.mean(accs) |
|
if task.scale_by_100: |
|
mean_acc *= 100.0 |
|
|
|
results[task.benchmark] = {"value": mean_acc, "category": task.category} |
|
|
|
|
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=results, |
|
precision=precision, |
|
revision=config.get("model_sha", ""), |
|
still_on_hub=still_on_hub, |
|
architecture=architecture, |
|
**additional_info, |
|
) |
|
|
|
def update_with_request_file(self, requests_path): |
|
"""Finds the relevant request file for the current model and updates info with it""" |
|
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) |
|
|
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
self.model_type = ModelType.from_str(request.get("model_type", "")) |
|
self.weight_type = WeightType[request.get("weight_type", "Original")] |
|
self.license = request.get("license", "?") |
|
self.likes = request.get("likes", 0) |
|
self.num_params = request.get("params", 0) |
|
self.date = request.get("submitted_time", "") |
|
except Exception: |
|
print( |
|
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}" |
|
) |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
|
|
|
|
def _get_score_category(category): |
|
filtered_scores = [v["value"] for _, v in self.results.items() if v["category"] == category] |
|
return sum(filtered_scores) / len(filtered_scores) |
|
|
|
average_NLU = _get_score_category("NLU") |
|
average_CFK = _get_score_category("CFK") |
|
average_BFS = _get_score_category("BFS") |
|
average = (average_NLU + average_CFK + average_BFS) / 3 |
|
|
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
AutoEvalColumn.precision.name: self.precision.value.name, |
|
AutoEvalColumn.model_type.name: self.model_type.value.name, |
|
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, |
|
AutoEvalColumn.weight_type.name: self.weight_type.value.name, |
|
AutoEvalColumn.architecture.name: self.architecture, |
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model), |
|
AutoEvalColumn.average_NLU.name: average_NLU, |
|
AutoEvalColumn.average_CFK.name: average_CFK, |
|
AutoEvalColumn.average_BFS.name: average_BFS, |
|
AutoEvalColumn.average.name: average, |
|
AutoEvalColumn.license.name: self.license, |
|
AutoEvalColumn.params.name: self.num_params, |
|
AutoEvalColumn.revision.name: self.revision, |
|
AutoEvalColumn.likes.name: self.likes, |
|
AutoEvalColumn.still_on_hub.name: self.still_on_hub, |
|
AutoEvalColumn.training_codebase.name: self.training_codebase.value.symbol, |
|
AutoEvalColumn.training_data.name: self.training_data.value.symbol, |
|
} |
|
|
|
for task in Tasks: |
|
data_dict[task.value.col_name] = self.results[task.value.benchmark] |
|
|
|
return data_dict |
|
|
|
|
|
def get_request_file_for_model(requests_path, model_name, precision): |
|
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" |
|
request_files = os.path.join( |
|
requests_path, |
|
f"{model_name}_eval_request_*.json", |
|
) |
|
request_files = glob.glob(request_files) |
|
|
|
|
|
request_file = "" |
|
request_files = sorted(request_files, reverse=True) |
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]: |
|
request_file = tmp_request_file |
|
return request_file |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
model_info_path = os.path.join(results_path, "model_info.yaml") |
|
with open(model_info_path, "r") as f: |
|
model_info = yaml.safe_load(f) |
|
|
|
model_name_list = model_info.keys() |
|
model_folders = [m.replace("/", "__") for m in model_name_list] |
|
|
|
for model_folder in model_folders: |
|
print(f"Reading data from {model_folder}") |
|
model_result_filepaths += glob.glob(os.path.join(results_path, model_folder, "results_*.json")) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
|
|
|
|
|
|
|
|
eval_name = eval_result.eval_name |
|
if eval_name in eval_results.keys(): |
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) |
|
else: |
|
eval_results[eval_name] = eval_result |
|
|
|
results_for_table = list() |
|
for k, v in eval_results.items(): |
|
try: |
|
v.to_dict() |
|
results_for_table.append(v) |
|
except RuntimeError as e: |
|
print(f"Issue with results of: ", k) |
|
raise e |
|
|
|
|
|
return results_for_table |
|
|