File size: 13,549 Bytes
a03c9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# Copyright 2024 The YourMT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Please see the details in the LICENSE file.
""" projection_layer.py """
from typing import Tuple
import math
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Linear, LayerNorm
from einops import rearrange
from model.ops import count_parameters
class GroupLinearFlatten(nn.Module):
"""
Implements a grouped linear layer with a flattened output.
This module applies individual linear transformations for each group in the input tensor
and then flattens the group dimension to produce the final output. It's useful when you
have distinct groups in the input tensor and you want separate linear transformations for
each of these groups.
Args:
- in_features (int): The number of input features per group.
- flatten_out_features (int): The total number of flattened output features. This value must
be divisible by num_groups. The actual number of output features
per group is computed as flatten_out_features/num_groups.
- num_groups (int): The number of distinct groups in the input tensor.
- use_bmm (bool, optional): Whether to use batch matrix multiplication for computation.
Default is True.
Shape:
- Input: (batch_size, sequence_length, num_groups, in_features)
- Output: (batch_size, sequence_length, flatten_out_features)
Examples:
>>> m = GroupLinearFlatten(128, 512, 24) #
>>> input = torch.randn(16, 10, 24, 128) # (B, T, C, F)
>>> output = m(input)
>>> output.size()
torch.Size([16, 10, 512]) # (B, T, D)
"""
def __init__(self, in_features, flatten_out_features, num_groups, use_bmm=True):
super().__init__()
self.in_features = in_features
self.flatten_out_features = flatten_out_features
self.num_groups = num_groups
self.use_bmm = use_bmm
# Assuming flatten_out_features is divisible by num_groups
self.out_features_per_group = self.flatten_out_features // self.num_groups
# Each group gets its own weights
self.weight = nn.Parameter(torch.Tensor(num_groups, self.out_features_per_group, in_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, input):
# input shape: (batch, seq_length, groups, in_features)
# weight shape: (groups, out_features_per_group, in_features)
batch_size, t, k, source_d = input.size()
if self.use_bmm:
# Reshape input for bmm operation
input_reshaped = rearrange(input, 'b t k d -> k d (b t)')
# Matrix multiplication: dot((k, out_features_per_group, d), (k, d, b*t)) -> (k, out_features_per_group, b*t)
output_bmm = torch.bmm(self.weight, input_reshaped)
# Reshape back to original shape and flatten the group dimension
output = rearrange(output_bmm, 'k d_out (b t) -> b t (k d_out)', b=batch_size, t=t, k=k)
else:
output = torch.einsum('bsgi,goi->bsgo', input, self.weight)
output = rearrange(output, 'b t k d_out -> b t (k d_out)')
return output
# class MultiChannelGroupLinear(nn.Module):
# """ Not Implemented Yet """
# def __init__(self, in_ch=26, in_dim=128, out_ch=13, out_dim=512):
# super().__init__()
# self.in_ch = in_ch
# self.in_dim = in_dim
# self.out_ch = out_ch
# self.out_dim = out_dim
# self.in_ch_per_group = in_ch // out_ch
# self.layer = GroupLinearFlatten(in_features=)
class MultiChannelLinearProjection(nn.Module):
def __init__(self, in_ch=26, in_dim=128, out_ch=13, out_dim=512):
super().__init__()
self.in_ch = in_ch
self.in_dim = in_dim
self.out_ch = out_ch
self.out_dim = out_dim
self.in_ch_per_group = in_ch // out_ch
self.linear_in_ch = in_ch // self.in_ch_per_group
self.linear_in_dim = in_dim * self.in_ch_per_group
# Reshaped Input shape: (b, t, in_dim//in_ch_per_group, in_dim*in_ch_per_group)
# Output shape: (b, t, out_ch, out_dim)
if in_dim * self.in_ch_per_group == out_dim:
self.linear = nn.Identity()
else:
self.linear = nn.Linear(in_features=self.linear_in_dim, out_features=out_dim, bias=False)
def forward(self, x):
"""
Args:
x: (B, T, C, D)
Returns:
x: (B, C_target, T, D_target)
"""
x = rearrange(x, 'b t (c1 c2) d -> b c1 t (c2 d)', c1=self.linear_in_ch, c2=self.in_ch_per_group)
return self.linear(x)
def get_multi_channel_projection_layer(input_shape: Tuple[int], output_shape: Tuple[int], proj_type: str) -> nn.Module:
""" This function returns one of the projection layers for multi-channel models."""
in_ch = input_shape[-2]
in_dim = input_shape[-1]
out_ch = output_shape[-2]
out_dim = output_shape[-1]
if proj_type == 'mc_shared_linear':
return MultiChannelLinearProjection(in_ch, in_dim, out_ch, out_dim)
def test_multi_channel_linear_projection():
x = torch.randn(2, 10, 26, 128) # (b, t, c, d)
mclp = MultiChannelLinearProjection(in_ch=26, in_dim=128, out_ch=13, out_dim=256) # actually nn.Identity()
assert type(nn.Identity()) == type(mclp.linear)
assert mclp(x).shape == (2, 13, 10, 256) # (b, _c, t, _d)
x = torch.randn(2, 10, 26, 128) # (b, t, c, d)
mclp = MultiChannelLinearProjection(in_ch=26, in_dim=128, out_ch=13, out_dim=512) # actually nn.Identity()
assert torch.nn.modules.linear.Linear == type(mclp.linear)
assert mclp(x).shape == (2, 13, 10, 512) # (b, _c, t, _d)
class FlattenMLP(nn.Module):
def __init__(self, in_features, flatten_out_features, num_groups, hidden_dim=None, activation=None):
super().__init__()
self.in_features = in_features
self.num_groups = num_groups
# Calculate flattened input dimension
self.flat_in_dim = in_features * num_groups
if hidden_dim is None:
hidden_dim = self.flat_in_dim // 2
self.hidden_dim = hidden_dim
# Check if flatten_out_features is divisible by in_features
assert flatten_out_features % in_features == 0, "flatten_out_features should be divisible by in_features."
# Define layers
self.layers = nn.Sequential(nn.Flatten(2, 3), nn.Linear(self.flat_in_dim, hidden_dim), nn.LayerNorm(hidden_dim),
activation() if activation else nn.Identity(), nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
activation() if activation else nn.Identity(),
nn.Linear(hidden_dim, flatten_out_features))
def forward(self, x):
# x shape: (batch, seq, num_groups, in_features)
return self.layers(x)
class LinearProjection(nn.Module):
def __init__(self, in_features, flatten_out_features, num_groups):
super().__init__()
# Calculate flattened input dimension
self.flat_in_dim = in_features * num_groups
self.projection_layer = nn.Linear(in_features=self.flat_in_dim, out_features=flatten_out_features, bias=False)
def forward(self, x):
# x shape: (batch, seq, num_groups, in_features)
batch_size, t, _, _ = x.size()
x_flattened = x.reshape(batch_size, t, -1) # Flattening num_groups and in_features
return self.projection_layer(x_flattened)
class DepthwiseConvProjection(nn.Module):
def __init__(self, in_features, flatten_out_features, num_groups, depth):
super().__init__()
d_out = flatten_out_features // in_features
self.conv = nn.Conv2d(in_channels=num_groups,
out_channels=num_groups * d_out,
kernel_size=(1, depth),
groups=num_groups)
self.fc = nn.Linear(num_groups * d_out * (in_features - depth + 1), flatten_out_features)
def forward(self, x):
# Swap the dimensions of k and t to match expected input for depthwise convolution
x = x.permute(0, 2, 1, 3) # shape: (b, k, t, d)
# Convolutional layer
x = self.conv(x) # shape: (b, k*d_out, t, d-depth+1)
# Reshape the tensor for the Linear layer
batch_size, _, t, _ = x.size()
x = x.reshape(batch_size, t, -1)
return self.fc(x)
def get_projection_layer(input_shape: Tuple[int], output_shape: Tuple[int], proj_type: str) -> nn.Module:
""" This function returns one of the projection layers defined below. """
if len(input_shape) == 2:
_, d_source = input_shape
elif len(input_shape) == 3:
_, k_source, d_source = input_shape
if len(output_shape) == 2:
_, d_target = output_shape
elif len(output_shape) == 3:
_, k_target, d_target = output_shape
if 'linear' == proj_type:
return LinearProjection(in_features=d_source, flatten_out_features=d_target, num_groups=k_source)
elif 'mlp' in proj_type:
if 'gelu' in proj_type:
return FlattenMLP(in_features=d_source,
flatten_out_features=d_target,
num_groups=k_source,
activation=nn.GELU)
elif 'relu' in proj_type:
return FlattenMLP(in_features=d_source,
flatten_out_features=d_target,
num_groups=k_source,
activation=nn.ReLU)
else:
return FlattenMLP(in_features=d_source, flatten_out_features=d_target, num_groups=k_source, activation=None)
elif 'conv' in proj_type:
if 'conv4' == proj_type:
return DepthwiseConvProjection(in_features=d_source,
flatten_out_features=d_target,
num_groups=k_source,
depth=4)
elif 'conv16' == proj_type:
return DepthwiseConvProjection(in_features=d_source,
flatten_out_features=d_target,
num_groups=k_source,
depth=16)
elif 'conv32' == proj_type:
return DepthwiseConvProjection(in_features=d_source,
flatten_out_features=d_target,
num_groups=k_source,
depth=32)
elif 'conv64' == proj_type:
return DepthwiseConvProjection(in_features=d_source,
flatten_out_features=d_target,
num_groups=k_source,
depth=64)
else: # conv depth 1
return DepthwiseConvProjection(in_features=d_source,
flatten_out_features=d_target,
num_groups=k_source,
depth=1)
elif 'group_linear' == proj_type:
assert d_source % k_source == 0, "d_source and k_source must be divisible for group_linear projection."
return GroupLinearFlatten(in_features=d_source,
flatten_out_features=d_target,
num_groups=k_source,
use_bmm=True)
else:
raise ValueError(f"Invalid projection type: {proj_type}")
def test_projection_layers():
# encoder hidden states: (B, T, K, D)
b = 2
t = 110 #10
k = 24 #16
d = 128
enc_hs = torch.randn(b, t, k, d)
# target shape: (B, T, K, D//4)
target_flatten_d = 512
# GroupLinear
gl = GroupLinearFlatten(in_features=d, flatten_out_features=target_flatten_d, num_groups=k, use_bmm=True)
enc_hs_hat = gl(enc_hs)
assert enc_hs_hat.shape == (b, t, target_flatten_d)
print('GroupLinear: ', f'{count_parameters(gl)//1000}k') # 65k
# FlattenMLP
fm = FlattenMLP(in_features=d,
flatten_out_features=target_flatten_d,
num_groups=k,
hidden_dim=None,
activation=nn.GELU)
enc_hs_hat = fm(enc_hs)
assert enc_hs_hat.shape == (b, t, target_flatten_d)
print('FlattenMLP: ', f'{count_parameters(fm)//1000}k') # 3.6M
# LinearProjection
lp = LinearProjection(in_features=d, flatten_out_features=target_flatten_d, num_groups=k)
enc_hs_hat = lp(enc_hs)
assert enc_hs_hat.shape == (b, t, target_flatten_d)
print('LinearProjection: ', f'{count_parameters(lp)//1000}k') # 1M
# DepthwiseConvProjection
dc = DepthwiseConvProjection(in_features=d, flatten_out_features=target_flatten_d, num_groups=k, depth=16)
enc_hs_hat = dc(enc_hs)
assert enc_hs_hat.shape == (b, t, target_flatten_d)
print('DepthwiseConvProjection: ', f'{count_parameters(dc)//1000}k') # 4M
|