File size: 10,263 Bytes
a03c9b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
""" preprocess_idmt_smt_bass.py """
import os
import glob
import json
import wave
import numpy as np
from typing import Dict, Tuple
from sklearn.model_selection import train_test_split
from utils.audio import get_audio_file_info, load_audio_file, write_wav_file, guess_onset_offset_by_amp_envelope
from utils.midi import midi2note, note_event2midi
from utils.note2event import note2note_event, sort_notes, validate_notes, trim_overlapping_notes
from utils.event2note import event2note_event
from utils.note_event_dataclasses import Note, NoteEvent
from utils.utils import assert_note_events_almost_equal

SPLIT_INFO_FILE = 'stratified_split_crepe_smt.json'

# Plucking style to GM program
PS2program = {
    "FS": 33,  # Fingered Elec Bass
    "MU": 33,  # Muted Elec Bass
    "PK": 34,  # Picked Elec Bass
    "SP": 36,  # Slap-Pluck Elec Bass
    "ST": 37,  # Salp-Thumb Elec Bass
}
PREPEND_SILENCE = 1.8  # seconds
APPEND_SILENCE = 1.8  # seconds


def bass_string_to_midi_pitch(string_number: int, fret: int, string_pitches=[28, 33, 38, 43, 48]):
    """ sring_number: 1, 2, 3, 4,  fret: 0, 1, 2, ..."""
    return string_pitches[string_number - 1] + fret


def regenerate_stratified_split(audio_files_dict):
    train_ids_dict = {}
    val_ids_dict = {}
    offset = 0

    for key, files in audio_files_dict.items():
        ids = np.arange(len(files)) + offset
        train_ids, val_ids = train_test_split(
            ids, test_size=0.2, random_state=42, stratify=np.zeros_like(ids))
        train_ids_dict[key] = train_ids
        val_ids_dict[key] = val_ids
        offset += len(files)

    train_ids = np.concatenate(list(train_ids_dict.values()))
    val_ids = np.concatenate(list(val_ids_dict.values()))
    assert len(train_ids) == 1872 and len(val_ids) == 470
    return train_ids, val_ids


def create_note_event_and_note_from_midi(mid_file: str,
                                         id: str,
                                         program: int = 0,
                                         ignore_pedal: bool = True) -> Tuple[Dict, Dict]:
    """Extracts note or note_event and metadata from midi:

    Returns:
        notes (dict): note events and metadata.
        note_events (dict): note events and metadata.
    """
    notes, dur_sec = midi2note(
        mid_file,
        binary_velocity=True,
        force_all_program_to=program,
        fix_offset=True,
        quantize=True,
        verbose=0,
        minimum_offset_sec=0.01,
        ignore_pedal=ignore_pedal)
    return {  # notes
        'idmt_smt_bass_id': str(id),
        'program': [program],
        'is_drum': [0],
        'duration_sec': dur_sec,
        'notes': notes,
    }, {  # note_events
        'idmt_smt_bass_id': str(id),
        'program': [0],
        'is_drum': [0],
        'duration_sec': dur_sec,
        'note_events': note2note_event(notes),
    }


def preprocess_idmt_smt_bass_16k(data_home=os.PathLike,
                                 dataset_name='idmt_smt_bass',
                                 sanity_check=True,
                                 edit_audio=True,
                                 regenerate_split=False) -> None:
    """
    Splits: stratified by plucking style
        'train': 1872
        'validation': 470
    Total: 2342

    Writes:
        - {dataset_name}_{split}_file_list.json: a dictionary with the following keys:
        {
            index:
            {
                'idmt_smt_bass_id': idmt_smt_bass_id,
                'n_frames': (int),
                'mix_audio_file': 'path/to/mix.wav',
                'notes_file': 'path/to/notes.npy',
                'note_events_file': 'path/to/note_events.npy',
                'midi_file': 'path/to/midi.mid',
                'program': List[int], see PS2program above
                'is_drum': List[int], # always [0] for this dataset
            }
        }
    """

    # Directory and file paths
    base_dir = os.path.join(data_home, dataset_name + '_yourmt3_16k')
    output_index_dir = os.path.join(data_home, 'yourmt3_indexes')
    os.makedirs(output_index_dir, exist_ok=True)

    # # audio file list
    # FS_audio_pattern = os.path.join(base_dir, 'PS/FS/*.wav')
    # MU_audio_pattern = os.path.join(base_dir, 'PS/MU/*.wav')
    # PK_audio_pattern = os.path.join(base_dir, 'PS/PK/*.wav')
    # SP_audio_pattern = os.path.join(base_dir, 'PS/SP/*.wav')
    # ST_audio_pattern = os.path.join(base_dir, 'PS/ST/*.wav')
    # FS_audio_files = sorted(glob.glob(FS_audio_pattern, recursive=False))
    # MU_audio_files = sorted(glob.glob(MU_audio_pattern, recursive=False))
    # PK_audio_files = sorted(glob.glob(PK_audio_pattern, recursive=False))
    # SP_audio_files = sorted(glob.glob(SP_audio_pattern, recursive=False))
    # ST_audio_files = sorted(glob.glob(ST_audio_pattern, recursive=False))
    # assert len(FS_audio_files) == 469
    # assert len(MU_audio_files) == 468
    # assert len(PK_audio_files) == 468
    # assert len(SP_audio_files) == 469
    # assert len(ST_audio_files) == 468
    # audio_files_dict = {
    #     'FS': FS_audio_files,
    #     'MU': MU_audio_files,
    #     'PK': PK_audio_files,
    #     'SP': SP_audio_files,
    #     'ST': ST_audio_files
    # }

    # splits:
    split_info_file = os.path.join(base_dir, SPLIT_INFO_FILE)
    with open(split_info_file, 'r') as f:
        split_info = json.load(f)

    all_info_dict = {}
    id = 0
    for split in ['train', 'validation']:
        for file_path in split_info[split]:
            audio_file = os.path.join(base_dir, file_path)
            assert os.path.exists(audio_file)
            all_info_dict[id] = {
                'idmt_smt_bass_id': id,
                'n_frames': None,
                'mix_audio_file': audio_file,
                'notes_file': None,
                'note_events_file': None,
                'midi_file': None,
                'program': None,
                'is_drum': [0]
            }
            id += 1
    train_ids = np.arange(len(split_info['train']))
    val_ids = np.arange(len(split_info['validation'])) + len(train_ids)
    # if regenerate_split is True:
    #     train_ids, val_ids = regenerate_stratified_split(audio_files_dict)
    # else:
    #     val_ids = VALIDATION_IDS
    #     train_ids = [i for i in range(len(all_info_dict)) if i not in val_ids]

    # Audio processing: prepend/append 1.8s silence
    if edit_audio is True:
        for v in all_info_dict.values():
            audio_file = v['mix_audio_file']
            fs, x_len, _ = get_audio_file_info(audio_file)
            x = load_audio_file(audio_file)  # (T,)
            prefix_len = int(fs * PREPEND_SILENCE)
            suffix_len = int(fs * APPEND_SILENCE)
            x_new_len = prefix_len + x_len + suffix_len
            x_new = np.zeros(x_new_len)
            x_new[prefix_len:prefix_len + x_len] = x

            # overwrite audio file
            print(f'Overwriting {audio_file} with silence prepended/appended')
            write_wav_file(audio_file, x_new, fs)

    # Guess Program/Pitch/Onset/Offset and Generate Notes/NoteEvents/MIDI
    for id in all_info_dict.keys():
        audio_file = all_info_dict[id]['mix_audio_file']

        # Guess program/pitch from audio file name
        _, _, _, _, pluck_style, _, string_num, fret_num = os.path.basename(audio_file).split(
            '.')[0].split('_')
        program = PS2program[pluck_style]
        pitch = bass_string_to_midi_pitch(int(string_num), int(fret_num))

        # Guess onset/offset from audio signal x
        fs, n_frames, _ = get_audio_file_info(audio_file)
        x = load_audio_file(audio_file, fs=fs)
        onset, offset, _ = guess_onset_offset_by_amp_envelope(
            x, fs=fs, onset_threshold=0.05, offset_threshold=0.02, frame_size=256)
        onset = round((onset / fs) * 1000) / 1000
        offset = round((offset / fs) * 1000) / 1000

        # Notes and NoteEvents
        notes = [
            Note(
                is_drum=False,
                program=program,
                onset=onset,
                offset=offset,
                pitch=pitch,
                velocity=1,
            )
        ]
        note_events = note2note_event(notes)

        # Write MIDI
        midi_file = audio_file.replace('.wav', '.mid')
        note_event2midi(note_events, midi_file)

        # Reconvert MIDI to Notes/NoteEvents, and validate
        notes_dict, note_events_dict = create_note_event_and_note_from_midi(
            midi_file, id, program=program, ignore_pedal=True)
        if sanity_check:
            assert_note_events_almost_equal(note_events_dict['note_events'], note_events)

        # Write notes and note_events
        notes_file = audio_file.replace('.wav', '_notes.npy')
        note_events_file = audio_file.replace('.wav', '_note_events.npy')
        np.save(notes_file, notes_dict, allow_pickle=True, fix_imports=False)
        np.save(note_events_file, note_events_dict, allow_pickle=True, fix_imports=False)
        print(f'Created {notes_file}')
        print(f'Created {note_events_file}')

        # Update all_info_dict
        all_info_dict[id]['n_frames'] = n_frames
        all_info_dict[id]['notes_file'] = notes_file
        all_info_dict[id]['note_events_file'] = note_events_file
        all_info_dict[id]['midi_file'] = midi_file
        all_info_dict[id]['program'] = [program]

    # Save index
    ids = {'train': train_ids, 'validation': val_ids, 'all': list(all_info_dict.keys())}
    for split in ['train', 'validation']:
        fl = {}
        for i, id in enumerate(ids[split]):
            fl[i] = all_info_dict[id]
        output_index_file = os.path.join(output_index_dir, f'{dataset_name}_{split}_file_list.json')
        with open(output_index_file, 'w') as f:
            json.dump(fl, f, indent=4)
        print(f'Created {output_index_file}')


def test_guess_onset_offset_by_amp_envelope(all_info_dict):
    import matplotlib.pyplot as plt
    id = np.random.randint(0, 2300)
    x = load_audio_file(all_info_dict[id]['mix_audio_file'])
    onset, offset, amp_env = guess_onset_offset_by_amp_envelope(x)
    plt.plot(x)
    plt.axvline(x=onset, color='r', linestyle='--', label='onset')
    plt.axvline(x=offset, color='g', linestyle='--', label='offset')
    plt.show()