|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional, Union |
|
|
|
from torch import nn |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
|
|
class ConformerYMT3Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`ConformerYMT3Encoder`]. It is used to |
|
instantiate an ConformerYMT3Encoder according to the specified arguments, defining the model architecture. |
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer |
|
[facebook/wav2vec2-conformer-rel-pos-large](https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large) |
|
architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
d_model (`int`, *optional*, defaults to 512): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 2048): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
dropout_rate (`float`, *optional*, defaults to 0.05): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
layerdrop (`float`, *optional*, defaults to 0.1): |
|
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more |
|
details. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): |
|
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the |
|
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. |
|
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): |
|
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length |
|
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. |
|
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): |
|
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The |
|
length of *conv_kernel* defines the number of convolutional layers and has to match the length of |
|
*conv_dim*. |
|
conv_bias (`bool`, *optional*, defaults to `False`): |
|
Whether the 1D convolutional layers have a bias. |
|
output_hidden_size (`int`, *optional*): |
|
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant |
|
if `add_adapter is True`. |
|
position_encoding_type (`str`, *optional*, defaults to `"relative"`): |
|
Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left |
|
`None` no relative position embedding is applied. |
|
rotary_embedding_base (`int`, *optional*, defaults to 10000): |
|
If `"rotary"` position embeddings are used, defines the size of the embedding base. |
|
num_max_positions (`int`, *optional*, defaults to 5000): |
|
if `"relative"` position embeddings are used, defines the maximum source input positions. |
|
conv_depthwise_kernel_size (`int`, defaults to 31): |
|
Kernel size of convolutional depthwise 1D layer in Conformer blocks. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import ConformerYMT3Config, ConformerYMT3Encoder |
|
|
|
>>> # Initializing a ConformerYMT3Encoder configuration |
|
>>> configuration = ConformerYMT3Config() |
|
|
|
>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration |
|
>>> model = ConformerYMT3Encoder(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "conformer-ymt3" |
|
|
|
def __init__( |
|
self, |
|
d_model=512, |
|
num_layers=8, |
|
num_heads=8, |
|
intermediate_size=2048, |
|
hidden_act="gelu", |
|
dropout_rate=0.1, |
|
layerdrop=0.1, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-5, |
|
conv_dim=(512, 512, 512, 512, 512, 512, 512), |
|
conv_stride=(5, 2, 2, 2, 2, 2, 2), |
|
conv_kernel=(10, 3, 3, 3, 3, 3, 3), |
|
conv_bias=False, |
|
position_encoding_type="rotary", |
|
rotary_embedding_base=10000, |
|
num_max_positions=1024, |
|
conv_depthwise_kernel_size=31, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.d_model = d_model |
|
self.conv_dim = list(conv_dim) |
|
self.conv_stride = list(conv_stride) |
|
self.conv_kernel = list(conv_kernel) |
|
self.conv_bias = conv_bias |
|
self.num_layers = num_layers |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.num_heads = num_heads |
|
self.dropout_rate = dropout_rate |
|
|
|
self.layerdrop = layerdrop |
|
self.layer_norm_eps = layer_norm_eps |
|
self.initializer_range = initializer_range |
|
self.num_max_positions = num_max_positions |
|
self.position_encoding_type = position_encoding_type |
|
self.rotary_embedding_base = rotary_embedding_base |
|
|
|
|
|
self.conv_depthwise_kernel_size = conv_depthwise_kernel_size |
|
|
|
|
|
class ConformerYMT3PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ConformerYMT3Config |
|
base_model_prefix = "wav2vec2_conformer" |
|
main_input_name = "input_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if module.__class__.__name__ == "ConformerYMT3SelfAttention": |
|
if hasattr(module, "pos_bias_u"): |
|
nn.init.xavier_uniform_(module.pos_bias_u) |
|
if hasattr(module, "pos_bias_v"): |
|
nn.init.xavier_uniform_(module.pos_bias_v) |
|
elif isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, nn.Conv1d): |
|
nn.init.kaiming_normal_(module.weight) |
|
if module.bias is not None: |
|
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) |
|
nn.init.uniform_(module.bias, a=-k, b=k) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if module.__class__.__name__ == "ConformerYMT3Encoder": |
|
module.gradient_checkpointing = value |
|
|