Rick458 commited on
Commit
c92cdc7
1 Parent(s): c5a4e13

added description and links

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -140,11 +140,17 @@ def classify_image(path):
140
  image = gr.inputs.Image(shape=(224, 224), type="filepath")
141
  label = gr.outputs.Label(num_top_classes=1)
142
 
 
 
143
 
144
  gr.Interface(
145
  fn=classify_image,
146
  inputs=image,
147
  outputs=label,
148
  examples = [["idli.jpg"], ["naan.jpg"]],
149
- theme = "darkhuggingface"
 
 
 
 
150
  ).launch()
 
140
  image = gr.inputs.Image(shape=(224, 224), type="filepath")
141
  label = gr.outputs.Label(num_top_classes=1)
142
 
143
+ article = "<p style='text-align: center'><a href='https://' target='_blank'>DesiVisionNet</a> | <a href='https://github.com/kunal-bhadra/DesiVisionNet' target='_blank'>GitHub Repo</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=kunal-bhadra.DesiVisionNet' alt='visitor badge'></center>"
144
+
145
 
146
  gr.Interface(
147
  fn=classify_image,
148
  inputs=image,
149
  outputs=label,
150
  examples = [["idli.jpg"], ["naan.jpg"]],
151
+ theme = "huggingface",
152
+ layout = "horizontal",
153
+ title = "DesiVisionNet: Desi Food Vision with ResNet",
154
+ description = "This is a Gradio demo for multi-class image classification of Indian food amongst 20 classes. The DesiVisionNet achieved 90% accuracy on our test dataset, performing well for a relatively efficient model. See the GitHub project page for detailed information below. Here, we provide a demo for real-world food classification. To use it, simply upload your image, or click one of the examples to load them.",
155
+ article = article
156
  ).launch()