File size: 5,242 Bytes
5d21dd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
from . import *
class DW_Encoder(nn.Module):
def __init__(self, message_length, blocks=2, channels=64, attention=None):
super(DW_Encoder, self).__init__()
self.conv1 = ConvBlock(3, 16, blocks=blocks)
self.down1 = Down(16, 32, blocks=blocks)
self.down2 = Down(32, 64, blocks=blocks)
self.down3 = Down(64, 128, blocks=blocks)
self.down4 = Down(128, 256, blocks=blocks)
self.up3 = UP(256, 128)
self.linear3 = nn.Linear(message_length, message_length * message_length)
self.Conv_message3 = ConvBlock(1, channels, blocks=blocks)
self.att3 = ResBlock(128 * 2 + channels, 128, blocks=blocks, attention=attention)
self.up2 = UP(128, 64)
self.linear2 = nn.Linear(message_length, message_length * message_length)
self.Conv_message2 = ConvBlock(1, channels, blocks=blocks)
self.att2 = ResBlock(64 * 2 + channels, 64, blocks=blocks, attention=attention)
self.up1 = UP(64, 32)
self.linear1 = nn.Linear(message_length, message_length * message_length)
self.Conv_message1 = ConvBlock(1, channels, blocks=blocks)
self.att1 = ResBlock(32 * 2 + channels, 32, blocks=blocks, attention=attention)
self.up0 = UP(32, 16)
self.linear0 = nn.Linear(message_length, message_length * message_length)
self.Conv_message0 = ConvBlock(1, channels, blocks=blocks)
self.att0 = ResBlock(16 * 2 + channels, 16, blocks=blocks, attention=attention)
self.Conv_1x1 = nn.Conv2d(16 + 3, 3, kernel_size=1, stride=1, padding=0)
self.message_length = message_length
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
def forward(self, x, watermark):
d0 = self.conv1(x)
d1 = self.down1(d0)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
u3 = self.up3(d4)
expanded_message = self.linear3(watermark)
expanded_message = expanded_message.view(-1, 1, self.message_length, self.message_length)
expanded_message = F.interpolate(expanded_message, size=(d3.shape[2], d3.shape[3]),
mode='nearest')
expanded_message = self.Conv_message3(expanded_message)
u3 = torch.cat((d3, u3, expanded_message), dim=1)
u3 = self.att3(u3)
u2 = self.up2(u3)
expanded_message = self.linear2(watermark)
expanded_message = expanded_message.view(-1, 1, self.message_length, self.message_length)
expanded_message = F.interpolate(expanded_message, size=(d2.shape[2], d2.shape[3]),
mode='nearest')
expanded_message = self.Conv_message2(expanded_message)
u2 = torch.cat((d2, u2, expanded_message), dim=1)
u2 = self.att2(u2)
u1 = self.up1(u2)
expanded_message = self.linear1(watermark)
expanded_message = expanded_message.view(-1, 1, self.message_length, self.message_length)
expanded_message = F.interpolate(expanded_message, size=(d1.shape[2], d1.shape[3]),
mode='nearest')
expanded_message = self.Conv_message1(expanded_message)
u1 = torch.cat((d1, u1, expanded_message), dim=1)
u1 = self.att1(u1)
u0 = self.up0(u1)
expanded_message = self.linear0(watermark)
expanded_message = expanded_message.view(-1, 1, self.message_length, self.message_length)
expanded_message = F.interpolate(expanded_message, size=(d0.shape[2], d0.shape[3]),
mode='nearest')
expanded_message = self.Conv_message0(expanded_message)
u0 = torch.cat((d0, u0, expanded_message), dim=1)
u0 = self.att0(u0)
image = self.Conv_1x1(torch.cat((x, u0), dim=1))
forward_image = image.clone().detach()
'''read_image = torch.zeros_like(forward_image)
for index in range(forward_image.shape[0]):
single_image = ((forward_image[index].clamp(-1, 1).permute(1, 2, 0) + 1) / 2 * 255).add(0.5).clamp(0, 255).to('cpu', torch.uint8).numpy()
im = Image.fromarray(single_image)
read = np.array(im, dtype=np.uint8)
read_image[index] = self.transform(read).unsqueeze(0).to(image.device)
gap = read_image - forward_image'''
gap = forward_image.clamp(-1, 1) - forward_image
return image + gap
class Down(nn.Module):
def __init__(self, in_channels, out_channels, blocks):
super(Down, self).__init__()
self.layer = torch.nn.Sequential(
ConvBlock(in_channels, in_channels, stride=2),
ConvBlock(in_channels, out_channels, blocks=blocks)
)
def forward(self, x):
return self.layer(x)
class UP(nn.Module):
def __init__(self, in_channels, out_channels):
super(UP, self).__init__()
self.conv = ConvBlock(in_channels, out_channels)
def forward(self, x):
x = F.interpolate(x, scale_factor=2, mode='nearest')
return self.conv(x)
|