File size: 5,919 Bytes
5d21dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Standard libraries
import itertools
import numpy as np
# PyTorch
import torch
import torch.nn as nn
# Local
from . import JPEG_utils


class rgb_to_ycbcr_jpeg(nn.Module):
    """ Converts RGB image to YCbCr

    """
    def __init__(self):
        super(rgb_to_ycbcr_jpeg, self).__init__()
        matrix = np.array(
            [[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5],
             [0.5, -0.418688, -0.081312]], dtype=np.float32).T
        self.shift = nn.Parameter(torch.tensor([0., 128., 128.]))
        #
        self.matrix = nn.Parameter(torch.from_numpy(matrix))

    def forward(self, image):
        image = image.permute(0, 2, 3, 1)
        result = torch.tensordot(image, self.matrix, dims=1) + self.shift
    #    result = torch.from_numpy(result)
        result.view(image.shape)
        return result



class chroma_subsampling(nn.Module):
    """ Chroma subsampling on CbCv channels
    Input:
        image(tensor): batch x height x width x 3
    Output:
        y(tensor): batch x height x width
        cb(tensor): batch x height/2 x width/2
        cr(tensor): batch x height/2 x width/2
    """
    def __init__(self):
        super(chroma_subsampling, self).__init__()

    def forward(self, image):
        image_2 = image.permute(0, 3, 1, 2).clone()
        avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2),
                                count_include_pad=False)
        cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1))
        cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1))
        cb = cb.permute(0, 2, 3, 1)
        cr = cr.permute(0, 2, 3, 1)
        return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3)
        

class block_splitting(nn.Module):
    """ Splitting image into patches
    Input:
        image(tensor): batch x height x width
    Output: 
        patch(tensor):  batch x h*w/64 x h x w
    """
    def __init__(self):
        super(block_splitting, self).__init__()
        self.k = 8

    def forward(self, image):
        height, width = image.shape[1:3]
        # print(height, width)
        batch_size = image.shape[0]
        # print(image.shape)
        image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k)
        image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
        return image_transposed.contiguous().view(batch_size, -1, self.k, self.k)
    

class dct_8x8(nn.Module):
    """ Discrete Cosine Transformation
    Input:
        image(tensor): batch x height x width
    Output:
        dcp(tensor): batch x height x width
    """
    def __init__(self):
        super(dct_8x8, self).__init__()
        tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
        for x, y, u, v in itertools.product(range(8), repeat=4):
            tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos(
                (2 * y + 1) * v * np.pi / 16)
        alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
        #
        self.tensor =  nn.Parameter(torch.from_numpy(tensor).float())
        self.scale = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha) * 0.25).float() )
        
    def forward(self, image):
        image = image - 128
        result = self.scale * torch.tensordot(image, self.tensor, dims=2)
        result.view(image.shape)
        return result


class y_quantize(nn.Module):
    """ JPEG Quantization for Y channel
    Input:
        image(tensor): batch x height x width
        rounding(function): rounding function to use
        factor(float): Degree of compression
    Output:
        image(tensor): batch x height x width
    """
    def __init__(self, rounding, factor=1):
        super(y_quantize, self).__init__()
        self.rounding = rounding
        self.factor = factor
        self.y_table = JPEG_utils.y_table

    def forward(self, image):
        image = image.float() / (self.y_table * self.factor)
        image = self.rounding(image)
        return image


class c_quantize(nn.Module):
    """ JPEG Quantization for CrCb channels
    Input:
        image(tensor): batch x height x width
        rounding(function): rounding function to use
        factor(float): Degree of compression
    Output:
        image(tensor): batch x height x width
    """
    def __init__(self, rounding, factor=1):
        super(c_quantize, self).__init__()
        self.rounding = rounding
        self.factor = factor
        self.c_table = JPEG_utils.c_table

    def forward(self, image):
        image = image.float() / (self.c_table * self.factor)
        image = self.rounding(image)
        return image


class compress_jpeg(nn.Module):
    """ Full JPEG compression algortihm
    Input:
        imgs(tensor): batch x 3 x height x width 
        rounding(function): rounding function to use
        factor(float): Compression factor
    Ouput:
        compressed(dict(tensor)): batch x h*w/64 x 8 x 8
    """
    def __init__(self, rounding=torch.round, factor=1):
        super(compress_jpeg, self).__init__()
        self.l1 = nn.Sequential(
            rgb_to_ycbcr_jpeg(),
            # comment this line if no subsampling 
            chroma_subsampling()
        )
        self.l2 = nn.Sequential(
            block_splitting(),
            dct_8x8()
        )
        self.c_quantize = c_quantize(rounding=rounding, factor=factor)
        self.y_quantize = y_quantize(rounding=rounding, factor=factor)
        
    def forward(self, image):
        y, cb, cr = self.l1(image*255) # modify 

        # y, cb, cr = result[:,:,:,0], result[:,:,:,1], result[:,:,:,2]
        components = {'y': y, 'cb': cb, 'cr': cr}
        for k in components.keys():
            comp = self.l2(components[k])
            # print(comp.shape)
            if k in ('cb', 'cr'):
                comp = self.c_quantize(comp)
            else:
                comp = self.y_quantize(comp)

            components[k] = comp

        return components['y'], components['cb'], components['cr']