|
""" |
|
Modified from torch.utils.data.distributed.DistributedSampler |
|
Support enlarging the dataset for *iter-oriented* training, for saving time when restart the |
|
dataloader after each epoch |
|
""" |
|
import math |
|
import torch |
|
from torch.utils.data.sampler import Sampler |
|
import torch.distributed as dist |
|
|
|
|
|
class DistIterSampler(Sampler): |
|
"""Sampler that restricts data loading to a subset of the dataset. |
|
|
|
It is especially useful in conjunction with |
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each |
|
process can pass a DistributedSampler instance as a DataLoader sampler, |
|
and load a subset of the original dataset that is exclusive to it. |
|
|
|
.. note:: |
|
Dataset is assumed to be of constant size. |
|
|
|
Arguments: |
|
dataset: Dataset used for sampling. |
|
num_replicas (optional): Number of processes participating in |
|
distributed training. |
|
rank (optional): Rank of the current process within num_replicas. |
|
""" |
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None, ratio=100): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.epoch = 0 |
|
self.num_samples = int(math.ceil(len(self.dataset) * ratio / self.num_replicas)) |
|
self.total_size = self.num_samples * self.num_replicas |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
indices = torch.randperm(self.total_size, generator=g).tolist() |
|
|
|
dsize = len(self.dataset) |
|
indices = [v % dsize for v in indices] |
|
|
|
|
|
indices = indices[self.rank:self.total_size:self.num_replicas] |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
|