|
import os |
|
import math |
|
import pickle |
|
import random |
|
import numpy as np |
|
import glob |
|
import torch |
|
import cv2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP'] |
|
|
|
|
|
def is_image_file(filename): |
|
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) |
|
|
|
|
|
def _get_paths_from_images(path): |
|
'''get image path list from image folder''' |
|
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) |
|
images = [] |
|
for dirpath, _, fnames in sorted(os.walk(path)): |
|
for fname in sorted(fnames): |
|
if is_image_file(fname): |
|
img_path = os.path.join(dirpath, fname) |
|
images.append(img_path) |
|
assert images, '{:s} has no valid image file'.format(path) |
|
return images |
|
|
|
|
|
def _get_paths_from_lmdb(dataroot): |
|
'''get image path list from lmdb meta info''' |
|
meta_info = pickle.load(open(os.path.join(dataroot, 'meta_info.pkl'), 'rb')) |
|
paths = meta_info['keys'] |
|
sizes = meta_info['resolution'] |
|
if len(sizes) == 1: |
|
sizes = sizes * len(paths) |
|
return paths, sizes |
|
|
|
|
|
def get_image_paths(data_type, dataroot): |
|
'''get image path list |
|
support lmdb or image files''' |
|
paths, sizes = None, None |
|
if dataroot is not None: |
|
if data_type == 'lmdb': |
|
paths, sizes = _get_paths_from_lmdb(dataroot) |
|
elif data_type == 'img': |
|
paths = sorted(_get_paths_from_images(dataroot)) |
|
else: |
|
raise NotImplementedError('data_type [{:s}] is not recognized.'.format(data_type)) |
|
return paths, sizes |
|
|
|
|
|
def glob_file_list(root): |
|
return sorted(glob.glob(os.path.join(root, '*'))) |
|
|
|
|
|
|
|
def _read_img_lmdb(env, key, size): |
|
'''read image from lmdb with key (w/ and w/o fixed size) |
|
size: (C, H, W) tuple''' |
|
with env.begin(write=False) as txn: |
|
buf = txn.get(key.encode('ascii')) |
|
img_flat = np.frombuffer(buf, dtype=np.uint8) |
|
C, H, W = size |
|
img = img_flat.reshape(H, W, C) |
|
return img |
|
|
|
|
|
def read_img(env, path, size=None): |
|
'''read image by cv2 or from lmdb |
|
return: Numpy float32, HWC, BGR, [0,1]''' |
|
if env is None: |
|
|
|
|
|
img = cv2.imread(path, cv2.IMREAD_COLOR) |
|
else: |
|
img = _read_img_lmdb(env, path, size) |
|
|
|
|
|
|
|
|
|
img = img.astype(np.float32) / 255. |
|
if img.ndim == 2: |
|
img = np.expand_dims(img, axis=2) |
|
|
|
if img.shape[2] > 3: |
|
img = img[:, :, :3] |
|
return img |
|
|
|
|
|
def read_img_seq(path): |
|
"""Read a sequence of images from a given folder path |
|
Args: |
|
path (list/str): list of image paths/image folder path |
|
|
|
Returns: |
|
imgs (Tensor): size (T, C, H, W), RGB, [0, 1] |
|
""" |
|
if type(path) is list: |
|
img_path_l = path |
|
else: |
|
img_path_l = sorted(glob.glob(os.path.join(path, '*.png'))) |
|
|
|
|
|
img_l = [read_img(None, v) for v in img_path_l] |
|
|
|
imgs = np.stack(img_l, axis=0) |
|
imgs = imgs[:, :, :, [2, 1, 0]] |
|
imgs = torch.from_numpy(np.ascontiguousarray(np.transpose(imgs, (0, 3, 1, 2)))).float() |
|
return imgs |
|
|
|
|
|
def index_generation(crt_i, max_n, N, padding='reflection'): |
|
"""Generate an index list for reading N frames from a sequence of images |
|
Args: |
|
crt_i (int): current center index |
|
max_n (int): max number of the sequence of images (calculated from 1) |
|
N (int): reading N frames |
|
padding (str): padding mode, one of replicate | reflection | new_info | circle |
|
Example: crt_i = 0, N = 5 |
|
replicate: [0, 0, 0, 1, 2] |
|
reflection: [2, 1, 0, 1, 2] |
|
new_info: [4, 3, 0, 1, 2] |
|
circle: [3, 4, 0, 1, 2] |
|
|
|
Returns: |
|
return_l (list [int]): a list of indexes |
|
""" |
|
max_n = max_n - 1 |
|
n_pad = N // 2 |
|
return_l = [] |
|
|
|
for i in range(crt_i - n_pad, crt_i + n_pad + 1): |
|
if i < 0: |
|
if padding == 'replicate': |
|
add_idx = 0 |
|
elif padding == 'reflection': |
|
add_idx = -i |
|
elif padding == 'new_info': |
|
add_idx = (crt_i + n_pad) + (-i) |
|
elif padding == 'circle': |
|
add_idx = N + i |
|
else: |
|
raise ValueError('Wrong padding mode') |
|
elif i > max_n: |
|
if padding == 'replicate': |
|
add_idx = max_n |
|
elif padding == 'reflection': |
|
add_idx = max_n * 2 - i |
|
elif padding == 'new_info': |
|
add_idx = (crt_i - n_pad) - (i - max_n) |
|
elif padding == 'circle': |
|
add_idx = i - N |
|
else: |
|
raise ValueError('Wrong padding mode') |
|
else: |
|
add_idx = i |
|
return_l.append(add_idx) |
|
return return_l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def augment(img_list, hflip=True, rot=True): |
|
|
|
hflip = hflip and random.random() < 0.5 |
|
vflip = rot and random.random() < 0.5 |
|
rot90 = rot and random.random() < 0.5 |
|
|
|
def _augment(img): |
|
if hflip: |
|
img = img[:, ::-1, :] |
|
if vflip: |
|
img = img[::-1, :, :] |
|
if rot90: |
|
img = img.transpose(1, 0, 2) |
|
return img |
|
|
|
return [_augment(img) for img in img_list] |
|
|
|
|
|
def augment_flow(img_list, flow_list, hflip=True, rot=True): |
|
|
|
hflip = hflip and random.random() < 0.5 |
|
vflip = rot and random.random() < 0.5 |
|
rot90 = rot and random.random() < 0.5 |
|
|
|
def _augment(img): |
|
if hflip: |
|
img = img[:, ::-1, :] |
|
if vflip: |
|
img = img[::-1, :, :] |
|
if rot90: |
|
img = img.transpose(1, 0, 2) |
|
return img |
|
|
|
def _augment_flow(flow): |
|
if hflip: |
|
flow = flow[:, ::-1, :] |
|
flow[:, :, 0] *= -1 |
|
if vflip: |
|
flow = flow[::-1, :, :] |
|
flow[:, :, 1] *= -1 |
|
if rot90: |
|
flow = flow.transpose(1, 0, 2) |
|
flow = flow[:, :, [1, 0]] |
|
return flow |
|
|
|
rlt_img_list = [_augment(img) for img in img_list] |
|
rlt_flow_list = [_augment_flow(flow) for flow in flow_list] |
|
|
|
return rlt_img_list, rlt_flow_list |
|
|
|
|
|
def channel_convert(in_c, tar_type, img_list): |
|
|
|
if in_c == 3 and tar_type == 'gray': |
|
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] |
|
return [np.expand_dims(img, axis=2) for img in gray_list] |
|
elif in_c == 3 and tar_type == 'y': |
|
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] |
|
return [np.expand_dims(img, axis=2) for img in y_list] |
|
elif in_c == 1 and tar_type == 'RGB': |
|
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] |
|
else: |
|
return img_list |
|
|
|
|
|
def rgb2ycbcr(img, only_y=True): |
|
'''same as matlab rgb2ycbcr |
|
only_y: only return Y channel |
|
Input: |
|
uint8, [0, 255] |
|
float, [0, 1] |
|
''' |
|
in_img_type = img.dtype |
|
img.astype(np.float32) |
|
if in_img_type != np.uint8: |
|
img *= 255. |
|
|
|
if only_y: |
|
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 |
|
else: |
|
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], |
|
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] |
|
if in_img_type == np.uint8: |
|
rlt = rlt.round() |
|
else: |
|
rlt /= 255. |
|
return rlt.astype(in_img_type) |
|
|
|
|
|
def bgr2ycbcr(img, only_y=True): |
|
'''bgr version of rgb2ycbcr |
|
only_y: only return Y channel |
|
Input: |
|
uint8, [0, 255] |
|
float, [0, 1] |
|
''' |
|
in_img_type = img.dtype |
|
img.astype(np.float32) |
|
if in_img_type != np.uint8: |
|
img *= 255. |
|
|
|
if only_y: |
|
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 |
|
else: |
|
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], |
|
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] |
|
if in_img_type == np.uint8: |
|
rlt = rlt.round() |
|
else: |
|
rlt /= 255. |
|
return rlt.astype(in_img_type) |
|
|
|
|
|
def ycbcr2rgb(img): |
|
'''same as matlab ycbcr2rgb |
|
Input: |
|
uint8, [0, 255] |
|
float, [0, 1] |
|
''' |
|
in_img_type = img.dtype |
|
img.astype(np.float32) |
|
if in_img_type != np.uint8: |
|
img *= 255. |
|
|
|
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], |
|
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] |
|
if in_img_type == np.uint8: |
|
rlt = rlt.round() |
|
else: |
|
rlt /= 255. |
|
return rlt.astype(in_img_type) |
|
|
|
|
|
def modcrop(img_in, scale): |
|
|
|
img = np.copy(img_in) |
|
if img.ndim == 2: |
|
H, W = img.shape |
|
H_r, W_r = H % scale, W % scale |
|
img = img[:H - H_r, :W - W_r] |
|
elif img.ndim == 3: |
|
H, W, C = img.shape |
|
H_r, W_r = H % scale, W % scale |
|
img = img[:H - H_r, :W - W_r, :] |
|
else: |
|
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) |
|
return img |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cubic(x): |
|
absx = torch.abs(x) |
|
absx2 = absx**2 |
|
absx3 = absx**3 |
|
return (1.5 * absx3 - 2.5 * absx2 + 1) * ( |
|
(absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (( |
|
(absx > 1) * (absx <= 2)).type_as(absx)) |
|
|
|
|
|
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): |
|
if (scale < 1) and (antialiasing): |
|
|
|
kernel_width = kernel_width / scale |
|
|
|
|
|
x = torch.linspace(1, out_length, out_length) |
|
|
|
|
|
|
|
|
|
u = x / scale + 0.5 * (1 - 1 / scale) |
|
|
|
|
|
left = torch.floor(u - kernel_width / 2) |
|
|
|
|
|
|
|
|
|
|
|
P = math.ceil(kernel_width) + 2 |
|
|
|
|
|
|
|
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( |
|
1, P).expand(out_length, P) |
|
|
|
|
|
|
|
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices |
|
|
|
if (scale < 1) and (antialiasing): |
|
weights = scale * cubic(distance_to_center * scale) |
|
else: |
|
weights = cubic(distance_to_center) |
|
|
|
weights_sum = torch.sum(weights, 1).view(out_length, 1) |
|
weights = weights / weights_sum.expand(out_length, P) |
|
|
|
|
|
weights_zero_tmp = torch.sum((weights == 0), 0) |
|
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 1, P - 2) |
|
weights = weights.narrow(1, 1, P - 2) |
|
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 0, P - 2) |
|
weights = weights.narrow(1, 0, P - 2) |
|
weights = weights.contiguous() |
|
indices = indices.contiguous() |
|
sym_len_s = -indices.min() + 1 |
|
sym_len_e = indices.max() - in_length |
|
indices = indices + sym_len_s - 1 |
|
return weights, indices, int(sym_len_s), int(sym_len_e) |
|
|
|
|
|
def imresize(img, scale, antialiasing=True): |
|
|
|
|
|
|
|
|
|
in_C, in_H, in_W = img.size() |
|
_, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) |
|
kernel_width = 4 |
|
kernel = 'cubic' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( |
|
in_H, out_H, scale, kernel, kernel_width, antialiasing) |
|
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( |
|
in_W, out_W, scale, kernel, kernel_width, antialiasing) |
|
|
|
|
|
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) |
|
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) |
|
|
|
sym_patch = img[:, :sym_len_Hs, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) |
|
|
|
sym_patch = img[:, -sym_len_He:, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) |
|
|
|
out_1 = torch.FloatTensor(in_C, out_H, in_W) |
|
kernel_width = weights_H.size(1) |
|
for i in range(out_H): |
|
idx = int(indices_H[i][0]) |
|
out_1[0, i, :] = img_aug[0, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) |
|
out_1[1, i, :] = img_aug[1, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) |
|
out_1[2, i, :] = img_aug[2, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) |
|
|
|
|
|
|
|
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) |
|
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) |
|
|
|
sym_patch = out_1[:, :, :sym_len_Ws] |
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) |
|
|
|
sym_patch = out_1[:, :, -sym_len_We:] |
|
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) |
|
|
|
out_2 = torch.FloatTensor(in_C, out_H, out_W) |
|
kernel_width = weights_W.size(1) |
|
for i in range(out_W): |
|
idx = int(indices_W[i][0]) |
|
out_2[0, :, i] = out_1_aug[0, :, idx:idx + kernel_width].mv(weights_W[i]) |
|
out_2[1, :, i] = out_1_aug[1, :, idx:idx + kernel_width].mv(weights_W[i]) |
|
out_2[2, :, i] = out_1_aug[2, :, idx:idx + kernel_width].mv(weights_W[i]) |
|
|
|
return out_2 |
|
|
|
|
|
def imresize_np(img, scale, antialiasing=True): |
|
|
|
|
|
|
|
img = torch.from_numpy(img) |
|
|
|
in_H, in_W, in_C = img.size() |
|
_, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) |
|
kernel_width = 4 |
|
kernel = 'cubic' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( |
|
in_H, out_H, scale, kernel, kernel_width, antialiasing) |
|
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( |
|
in_W, out_W, scale, kernel, kernel_width, antialiasing) |
|
|
|
|
|
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) |
|
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) |
|
|
|
sym_patch = img[:sym_len_Hs, :, :] |
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(0, inv_idx) |
|
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) |
|
|
|
sym_patch = img[-sym_len_He:, :, :] |
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(0, inv_idx) |
|
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) |
|
|
|
out_1 = torch.FloatTensor(out_H, in_W, in_C) |
|
kernel_width = weights_H.size(1) |
|
for i in range(out_H): |
|
idx = int(indices_H[i][0]) |
|
out_1[i, :, 0] = img_aug[idx:idx + kernel_width, :, 0].transpose(0, 1).mv(weights_H[i]) |
|
out_1[i, :, 1] = img_aug[idx:idx + kernel_width, :, 1].transpose(0, 1).mv(weights_H[i]) |
|
out_1[i, :, 2] = img_aug[idx:idx + kernel_width, :, 2].transpose(0, 1).mv(weights_H[i]) |
|
|
|
|
|
|
|
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) |
|
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) |
|
|
|
sym_patch = out_1[:, :sym_len_Ws, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) |
|
|
|
sym_patch = out_1[:, -sym_len_We:, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) |
|
|
|
out_2 = torch.FloatTensor(out_H, out_W, in_C) |
|
kernel_width = weights_W.size(1) |
|
for i in range(out_W): |
|
idx = int(indices_W[i][0]) |
|
out_2[:, i, 0] = out_1_aug[:, idx:idx + kernel_width, 0].mv(weights_W[i]) |
|
out_2[:, i, 1] = out_1_aug[:, idx:idx + kernel_width, 1].mv(weights_W[i]) |
|
out_2[:, i, 2] = out_1_aug[:, idx:idx + kernel_width, 2].mv(weights_W[i]) |
|
|
|
return out_2.numpy() |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
img = cv2.imread('test.png') |
|
img = img * 1.0 / 255 |
|
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() |
|
|
|
scale = 1 / 4 |
|
import time |
|
total_time = 0 |
|
for i in range(10): |
|
start_time = time.time() |
|
rlt = imresize(img, scale, antialiasing=True) |
|
use_time = time.time() - start_time |
|
total_time += use_time |
|
print('average time: {}'.format(total_time / 10)) |
|
|
|
import torchvision.utils |
|
torchvision.utils.save_image((rlt * 255).round() / 255, 'rlt.png', nrow=1, padding=0, |
|
normalize=False) |
|
|