EditGuard / models /modules /Inv_arch.py
Ricoooo's picture
'folder'
5d21dd2
raw
history blame
21.5 kB
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .module_util import initialize_weights_xavier
from torch.nn import init
from .common import DWT,IWT
import cv2
from basicsr.archs.arch_util import flow_warp
from models.modules.Subnet_constructor import subnet
import numpy as np
from pdb import set_trace as stx
import numbers
from einops import rearrange
from models.bitnetwork.Encoder_U import DW_Encoder
from models.bitnetwork.Decoder_U import DW_Decoder
## Layer Norm
def to_3d(x):
return rearrange(x, 'b c h w -> b (h w) c')
def to_4d(x, h, w):
return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
class BiasFree_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(BiasFree_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
sigma = x.var(-1, keepdim=True, unbiased=False)
return x / torch.sqrt(sigma + 1e-5) * self.weight
class WithBias_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(WithBias_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
mu = x.mean(-1, keepdim=True)
sigma = x.var(-1, keepdim=True, unbiased=False)
return (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight + self.bias
class LayerNorm(nn.Module):
def __init__(self, dim, LayerNorm_type):
super(LayerNorm, self).__init__()
if LayerNorm_type == 'BiasFree':
self.body = BiasFree_LayerNorm(dim)
else:
self.body = WithBias_LayerNorm(dim)
def forward(self, x):
h, w = x.shape[-2:]
return to_4d(self.body(to_3d(x)), h, w)
##########################################################################
## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):
def __init__(self, dim, ffn_expansion_factor, bias):
super(FeedForward, self).__init__()
hidden_features = int(dim * ffn_expansion_factor)
self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)
self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,
groups=hidden_features * 2, bias=bias)
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
##########################################################################
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):
def __init__(self, dim, num_heads, bias):
super(Attention, self).__init__()
self.num_heads = num_heads
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3, bias=bias)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
q, k, v = qkv.chunk(3, dim=1)
q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = (attn @ v)
out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)
out = self.project_out(out)
return out
##########################################################################
class TransformerBlock(nn.Module):
def __init__(self, dim, num_heads=4, ffn_expansion_factor=4, bias=False, LayerNorm_type="withbias"):
super(TransformerBlock, self).__init__()
self.norm1 = LayerNorm(dim, LayerNorm_type)
self.attn = Attention(dim, num_heads, bias)
self.norm2 = LayerNorm(dim, LayerNorm_type)
self.ffn = FeedForward(dim, ffn_expansion_factor, bias)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
dwt=DWT()
iwt=IWT()
class LayerNormFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, eps):
ctx.eps = eps
N, C, H, W = x.size()
mu = x.mean(1, keepdim=True)
var = (x - mu).pow(2).mean(1, keepdim=True)
y = (x - mu) / (var + eps).sqrt()
ctx.save_for_backward(y, var, weight)
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
return y
@staticmethod
def backward(ctx, grad_output):
eps = ctx.eps
N, C, H, W = grad_output.size()
y, var, weight = ctx.saved_variables
g = grad_output * weight.view(1, C, 1, 1)
mean_g = g.mean(dim=1, keepdim=True)
mean_gy = (g * y).mean(dim=1, keepdim=True)
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
dim=0), None
class LayerNorm2d(nn.Module):
def __init__(self, channels, eps=1e-6):
super(LayerNorm2d, self).__init__()
self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
self.eps = eps
def forward(self, x):
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
class SimpleGate(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
return x1 * x2
class NAFBlock(nn.Module):
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
super().__init__()
dw_channel = c * DW_Expand
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
bias=True)
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
# Simplified Channel Attention
self.sca = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * c
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.norm1 = LayerNorm2d(c)
self.norm2 = LayerNorm2d(c)
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
def forward(self, inp):
x = inp
x = self.norm1(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.sg(x)
x = x * self.sca(x)
x = self.conv3(x)
x = self.dropout1(x)
y = inp + x * self.beta
x = self.conv4(self.norm2(y))
x = self.sg(x)
x = self.conv5(x)
x = self.dropout2(x)
return y + x * self.gamma
def thops_mean(tensor, dim=None, keepdim=False):
if dim is None:
# mean all dim
return torch.mean(tensor)
else:
if isinstance(dim, int):
dim = [dim]
dim = sorted(dim)
for d in dim:
tensor = tensor.mean(dim=d, keepdim=True)
if not keepdim:
for i, d in enumerate(dim):
tensor.squeeze_(d-i)
return tensor
class ResidualBlockNoBN(nn.Module):
def __init__(self, nf=64, model='MIMO-VRN'):
super(ResidualBlockNoBN, self).__init__()
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
# honestly, there's no significant difference between ReLU and leaky ReLU in terms of performance here
# but this is how we trained the model in the first place and what we reported in the paper
if model == 'LSTM-VRN':
self.relu = nn.ReLU(inplace=True)
elif model == 'MIMO-VRN':
self.relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
initialize_weights_xavier([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = self.relu(self.conv1(x))
out = self.conv2(out)
return identity + out
class InvBlock(nn.Module):
def __init__(self, subnet_constructor, subnet_constructor_v2, channel_num_ho, channel_num_hi, groups, clamp=1.):
super(InvBlock, self).__init__()
self.split_len1 = channel_num_ho # channel_split_num
self.split_len2 = channel_num_hi # channel_num - channel_split_num
self.clamp = clamp
self.F = subnet_constructor_v2(self.split_len2, self.split_len1, groups=groups)
self.NF = NAFBlock(self.split_len2)
if groups == 1:
self.G = subnet_constructor(self.split_len1, self.split_len2, groups=groups)
self.NG = NAFBlock(self.split_len1)
self.H = subnet_constructor(self.split_len1, self.split_len2, groups=groups)
self.NH = NAFBlock(self.split_len1)
else:
self.G = subnet_constructor(self.split_len1, self.split_len2)
self.NG = NAFBlock(self.split_len1)
self.H = subnet_constructor(self.split_len1, self.split_len2)
self.NH = NAFBlock(self.split_len1)
def forward(self, x1, x2, rev=False):
if not rev:
y1 = x1 + self.NF(self.F(x2))
self.s = self.clamp * (torch.sigmoid(self.NH(self.H(y1))) * 2 - 1)
y2 = [x2i.mul(torch.exp(self.s)) + self.NG(self.G(y1)) for x2i in x2]
else:
self.s = self.clamp * (torch.sigmoid(self.NH(self.H(x1))) * 2 - 1)
y2 = [(x2i - self.NG(self.G(x1))).div(torch.exp(self.s)) for x2i in x2]
y1 = x1 - self.NF(self.F(y2))
return y1, y2 # torch.cat((y1, y2), 1)
def jacobian(self, x, rev=False):
if not rev:
jac = torch.sum(self.s)
else:
jac = -torch.sum(self.s)
return jac / x.shape[0]
class InvNN(nn.Module):
def __init__(self, channel_in_ho=3, channel_in_hi=3, subnet_constructor=None, subnet_constructor_v2=None, block_num=[], down_num=2, groups=None):
super(InvNN, self).__init__()
operations = []
current_channel_ho = channel_in_ho
current_channel_hi = channel_in_hi
for i in range(down_num):
for j in range(block_num[i]):
b = InvBlock(subnet_constructor, subnet_constructor_v2, current_channel_ho, current_channel_hi, groups=groups)
operations.append(b)
self.operations = nn.ModuleList(operations)
def forward(self, x, x_h, rev=False, cal_jacobian=False):
# out = x
jacobian = 0
if not rev:
for op in self.operations:
x, x_h = op.forward(x, x_h, rev)
if cal_jacobian:
jacobian += op.jacobian(x, rev)
else:
for op in reversed(self.operations):
x, x_h = op.forward(x, x_h, rev)
if cal_jacobian:
jacobian += op.jacobian(x, rev)
if cal_jacobian:
return x, x_h, jacobian
else:
return x, x_h
class PredictiveModuleMIMO(nn.Module):
def __init__(self, channel_in, nf, block_num_rbm=8, block_num_trans=4):
super(PredictiveModuleMIMO, self).__init__()
self.conv_in = nn.Conv2d(channel_in, nf, 3, 1, 1, bias=True)
res_block = []
trans_block = []
for i in range(block_num_rbm):
res_block.append(ResidualBlockNoBN(nf))
for j in range(block_num_trans):
trans_block.append(TransformerBlock(nf))
self.res_block = nn.Sequential(*res_block)
self.transformer_block = nn.Sequential(*trans_block)
def forward(self, x):
x = self.conv_in(x)
x = self.res_block(x)
res = self.transformer_block(x) + x
return res
class ConvRelu(nn.Module):
def __init__(self, channels_in, channels_out, stride=1, init_zero=False):
super(ConvRelu, self).__init__()
self.init_zero = init_zero
if self.init_zero:
self.layers = nn.Conv2d(channels_in, channels_out, 3, stride, padding=1)
else:
self.layers = nn.Sequential(
nn.Conv2d(channels_in, channels_out, 3, stride, padding=1),
nn.LeakyReLU(inplace=True)
)
def forward(self, x):
return self.layers(x)
class PredictiveModuleBit(nn.Module):
def __init__(self, channel_in, nf, block_num_rbm=4, block_num_trans=2):
super(PredictiveModuleBit, self).__init__()
self.conv_in = nn.Conv2d(channel_in, nf, 3, 1, 1, bias=True)
res_block = []
trans_block = []
for i in range(block_num_rbm):
res_block.append(ResidualBlockNoBN(nf))
for j in range(block_num_trans):
trans_block.append(TransformerBlock(nf))
blocks = 4
layers = [ConvRelu(nf, 1, 2)]
for _ in range(blocks - 1):
layer = ConvRelu(1, 1, 2)
layers.append(layer)
self.layers = nn.Sequential(*layers)
self.res_block = nn.Sequential(*res_block)
self.transformer_block = nn.Sequential(*trans_block)
def forward(self, x):
x = self.conv_in(x)
x = self.res_block(x)
res = self.transformer_block(x) + x
res = self.layers(res)
return res
##---------- Prompt Gen Module -----------------------
class PromptGenBlock(nn.Module):
def __init__(self,prompt_dim=12,prompt_len=3,prompt_size = 36,lin_dim = 12):
super(PromptGenBlock,self).__init__()
self.prompt_param = nn.Parameter(torch.rand(1,prompt_len,prompt_dim,prompt_size,prompt_size))
self.linear_layer = nn.Linear(lin_dim,prompt_len)
self.conv3x3 = nn.Conv2d(prompt_dim,prompt_dim,kernel_size=3,stride=1,padding=1,bias=False)
def forward(self,x):
B,C,H,W = x.shape
emb = x.mean(dim=(-2,-1))
prompt_weights = F.softmax(self.linear_layer(emb),dim=1)
prompt = prompt_weights.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) * self.prompt_param.unsqueeze(0).repeat(B,1,1,1,1,1).squeeze(1)
prompt = torch.sum(prompt,dim=1)
prompt = F.interpolate(prompt,(H,W),mode="bilinear")
prompt = self.conv3x3(prompt)
return prompt
class PredictiveModuleMIMO_prompt(nn.Module):
def __init__(self, channel_in, nf, prompt_len=3, block_num_rbm=8, block_num_trans=4):
super(PredictiveModuleMIMO_prompt, self).__init__()
self.conv_in = nn.Conv2d(channel_in, nf, 3, 1, 1, bias=True)
res_block = []
trans_block = []
for i in range(block_num_rbm):
res_block.append(ResidualBlockNoBN(nf))
for j in range(block_num_trans):
trans_block.append(TransformerBlock(nf))
self.res_block = nn.Sequential(*res_block)
self.transformer_block = nn.Sequential(*trans_block)
self.prompt = PromptGenBlock(prompt_dim=nf,prompt_len=prompt_len,prompt_size = 36,lin_dim = nf)
self.fuse = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True)
def forward(self, x):
x = self.conv_in(x)
x = self.res_block(x)
res = self.transformer_block(x) + x
prompt = self.prompt(res)
result = self.fuse(torch.cat([res, prompt], dim=1))
return result
def gauss_noise(shape):
noise = torch.zeros(shape).cuda()
for i in range(noise.shape[0]):
noise[i] = torch.randn(noise[i].shape).cuda()
return noise
def gauss_noise_mul(shape):
noise = torch.randn(shape).cuda()
return noise
class PredictiveModuleBit_prompt(nn.Module):
def __init__(self, channel_in, nf, prompt_length, block_num_rbm=4, block_num_trans=2):
super(PredictiveModuleBit_prompt, self).__init__()
self.conv_in = nn.Conv2d(channel_in, nf, 3, 1, 1, bias=True)
res_block = []
trans_block = []
for i in range(block_num_rbm):
res_block.append(ResidualBlockNoBN(nf))
for j in range(block_num_trans):
trans_block.append(TransformerBlock(nf))
blocks = 4
layers = [ConvRelu(nf, 1, 2)]
for _ in range(blocks - 1):
layer = ConvRelu(1, 1, 2)
layers.append(layer)
self.layers = nn.Sequential(*layers)
self.res_block = nn.Sequential(*res_block)
self.transformer_block = nn.Sequential(*trans_block)
self.prompt = PromptGenBlock(prompt_dim=nf,prompt_len=prompt_length,prompt_size = 36,lin_dim = nf)
self.fuse = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True)
def forward(self, x):
x = self.conv_in(x)
x = self.res_block(x)
res = self.transformer_block(x) + x
prompt = self.prompt(res)
res = self.fuse(torch.cat([res, prompt], dim=1))
res = self.layers(res)
return res
class VSN(nn.Module):
def __init__(self, opt, subnet_constructor=None, subnet_constructor_v2=None, down_num=2):
super(VSN, self).__init__()
self.model = opt['model']
self.mode = opt['mode']
opt_net = opt['network_G']
self.num_image = opt['num_image']
self.gop = opt['gop']
self.channel_in = opt_net['in_nc'] * self.gop
self.channel_out = opt_net['out_nc'] * self.gop
self.channel_in_hi = opt_net['in_nc'] * self.gop
self.channel_in_ho = opt_net['in_nc'] * self.gop
self.message_len = opt['message_length']
self.block_num = opt_net['block_num']
self.block_num_rbm = opt_net['block_num_rbm']
self.block_num_trans = opt_net['block_num_trans']
self.nf = self.channel_in_hi
self.bitencoder = DW_Encoder(self.message_len, attention = "se")
self.bitdecoder = DW_Decoder(self.message_len, attention = "se")
self.irn = InvNN(self.channel_in_ho, self.channel_in_hi, subnet_constructor, subnet_constructor_v2, self.block_num, down_num, groups=self.num_image)
if opt['prompt']:
self.pm = PredictiveModuleMIMO_prompt(self.channel_in_ho, self.nf* self.num_image, opt['prompt_len'], block_num_rbm=self.block_num_rbm, block_num_trans=self.block_num_trans)
else:
self.pm = PredictiveModuleMIMO(self.channel_in_ho, self.nf* self.num_image, opt['prompt_len'], block_num_rbm=self.block_num_rbm, block_num_trans=self.block_num_trans)
self.BitPM = PredictiveModuleBit(3, 4, block_num_rbm=4, block_num_trans=2)
def forward(self, x, x_h=None, message=None, rev=False, hs=[], direction='f'):
if not rev:
if self.mode == "image":
out_y, out_y_h = self.irn(x, x_h, rev)
out_y = iwt(out_y)
encoded_image = self.bitencoder(out_y, message)
return out_y, encoded_image
elif self.mode == "bit":
out_y = iwt(x)
encoded_image = self.bitencoder(out_y, message)
return out_y, encoded_image
else:
if self.mode == "image":
recmessage = self.bitdecoder(x)
x = dwt(x)
out_z = self.pm(x).unsqueeze(1)
out_z_new = out_z.view(-1, self.num_image, self.channel_in, x.shape[-2], x.shape[-1])
out_z_new = [out_z_new[:,i] for i in range(self.num_image)]
out_x, out_x_h = self.irn(x, out_z_new, rev)
return out_x, out_x_h, out_z, recmessage
elif self.mode == "bit":
recmessage = self.bitdecoder(x)
return recmessage