EditGuard / utils /util.py
Ricoooo's picture
'folder'
5d21dd2
raw
history blame
8.85 kB
import os
import sys
import time
import math
from datetime import datetime
import random
import logging
from collections import OrderedDict
import numpy as np
import cv2
import torch
from torchvision.utils import make_grid
from shutil import get_terminal_size
import yaml
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
def OrderedYaml():
'''yaml orderedDict support'''
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
def dict_representer(dumper, data):
return dumper.represent_dict(data.items())
def dict_constructor(loader, node):
return OrderedDict(loader.construct_pairs(node))
Dumper.add_representer(OrderedDict, dict_representer)
Loader.add_constructor(_mapping_tag, dict_constructor)
return Loader, Dumper
####################
# miscellaneous
####################
def get_timestamp():
return datetime.now().strftime('%y%m%d-%H%M%S')
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def mkdirs(paths):
if isinstance(paths, str):
mkdir(paths)
else:
for path in paths:
mkdir(path)
def mkdir_and_rename(path):
# print(path)
# exit(0)
if os.path.exists(path):
new_name = path + '_archived_' + get_timestamp()
print('Path already exists. Rename it to [{:s}]'.format(new_name))
logger = logging.getLogger('base')
logger.info('Path already exists. Rename it to [{:s}]'.format(new_name))
# path = new_name
os.rename(path, new_name)
os.makedirs(path)
# return path
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
'''set up logger'''
lg = logging.getLogger(logger_name)
formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
datefmt='%y-%m-%d %H:%M:%S')
lg.setLevel(level)
if tofile:
log_file = os.path.join(root, phase + '_{}.log'.format(get_timestamp()))
fh = logging.FileHandler(log_file, mode='w')
fh.setFormatter(formatter)
lg.addHandler(fh)
if screen:
sh = logging.StreamHandler()
sh.setFormatter(formatter)
lg.addHandler(sh)
####################
# image convert
####################
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
def save_img(img, img_path, mode='RGB'):
cv2.imwrite(img_path, img)
####################
# metric
####################
def calculate_psnr(img1, img2):
# img1 and img2 have range [0, 255]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calculate_ssim(img1, img2):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1, img2))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
class ProgressBar(object):
'''A progress bar which can print the progress
modified from https://github.com/hellock/cvbase/blob/master/cvbase/progress.py
'''
def __init__(self, task_num=0, bar_width=50, start=True):
self.task_num = task_num
max_bar_width = self._get_max_bar_width()
self.bar_width = (bar_width if bar_width <= max_bar_width else max_bar_width)
self.completed = 0
if start:
self.start()
def _get_max_bar_width(self):
terminal_width, _ = get_terminal_size()
max_bar_width = min(int(terminal_width * 0.6), terminal_width - 50)
if max_bar_width < 10:
print('terminal width is too small ({}), please consider widen the terminal for better '
'progressbar visualization'.format(terminal_width))
max_bar_width = 10
return max_bar_width
def start(self):
if self.task_num > 0:
sys.stdout.write('[{}] 0/{}, elapsed: 0s, ETA:\n{}\n'.format(
' ' * self.bar_width, self.task_num, 'Start...'))
else:
sys.stdout.write('completed: 0, elapsed: 0s')
sys.stdout.flush()
self.start_time = time.time()
def update(self, msg='In progress...'):
self.completed += 1
elapsed = time.time() - self.start_time
fps = self.completed / elapsed
if self.task_num > 0:
percentage = self.completed / float(self.task_num)
eta = int(elapsed * (1 - percentage) / percentage + 0.5)
mark_width = int(self.bar_width * percentage)
bar_chars = '>' * mark_width + '-' * (self.bar_width - mark_width)
sys.stdout.write('\033[2F') # cursor up 2 lines
sys.stdout.write('\033[J') # clean the output (remove extra chars since last display)
sys.stdout.write('[{}] {}/{}, {:.1f} task/s, elapsed: {}s, ETA: {:5}s\n{}\n'.format(
bar_chars, self.completed, self.task_num, fps, int(elapsed + 0.5), eta, msg))
else:
sys.stdout.write('completed: {}, elapsed: {}s, {:.1f} tasks/s'.format(
self.completed, int(elapsed + 0.5), fps))
sys.stdout.flush()
def bitWise_accurary(msg_fake, message):
#
if msg_fake == None:
return None, None
else:
DecodedMsg_rounded = msg_fake.detach().cpu().numpy().round().clip(0, 1)
diff = DecodedMsg_rounded - message.detach().cpu().numpy().round().clip(0, 1)
count = np.sum(np.abs(diff))
b, l = msg_fake.shape
accuracy = (1 - count / (b * l))
BitWise_AvgErr = count / (b * l)
return accuracy * 100, BitWise_AvgErr
def decoded_message_error_rate(message, decoded_message):
message = message.view(message.shape[0], -1).squeeze()
length = message.shape[0]
message = message.gt(0)
decoded_message = decoded_message.gt(0)
error_rate = float(sum(message != decoded_message)) / length
return error_rate
def decoded_message_error_rate_batch(messages, decoded_messages):
error_rate = 0.0
batch_size = len(messages)
for i in range(batch_size):
error_rate += decoded_message_error_rate(messages[i], decoded_messages[i])
error_rate /= batch_size
return error_rate