import torch import torch.nn as nn import torch.nn.functional as F import models.modules.module_util as mutil from basicsr.archs.arch_util import flow_warp, ResidualBlockNoBN from models.modules.module_util import initialize_weights_xavier class DenseBlock(nn.Module): def __init__(self, channel_in, channel_out, init='xavier', gc=32, bias=True): super(DenseBlock, self).__init__() self.conv1 = nn.Conv2d(channel_in, gc, 3, 1, 1, bias=bias) self.conv2 = nn.Conv2d(channel_in + gc, gc, 3, 1, 1, bias=bias) self.conv3 = nn.Conv2d(channel_in + 2 * gc, gc, 3, 1, 1, bias=bias) self.conv4 = nn.Conv2d(channel_in + 3 * gc, gc, 3, 1, 1, bias=bias) self.conv5 = nn.Conv2d(channel_in + 4 * gc, channel_out, 3, 1, 1, bias=bias) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) self.H = None if init == 'xavier': mutil.initialize_weights_xavier([self.conv1, self.conv2, self.conv3, self.conv4], 0.1) else: mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4], 0.1) mutil.initialize_weights(self.conv5, 0) def forward(self, x): if isinstance(x, list): x = x[0] x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) return x5 class DenseBlock_v2(nn.Module): def __init__(self, channel_in, channel_out, groups, init='xavier', gc=32, bias=True): super(DenseBlock_v2, self).__init__() self.conv1 = nn.Conv2d(channel_in, gc, 3, 1, 1, bias=bias) self.conv2 = nn.Conv2d(channel_in + gc, gc, 3, 1, 1, bias=bias) self.conv3 = nn.Conv2d(channel_in + 2 * gc, gc, 3, 1, 1, bias=bias) self.conv4 = nn.Conv2d(channel_in + 3 * gc, gc, 3, 1, 1, bias=bias) self.conv5 = nn.Conv2d(channel_in + 4 * gc, channel_out, 3, 1, 1, bias=bias) self.conv_final = nn.Conv2d(channel_out*groups, channel_out, 3, 1, 1, bias=bias) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) if init == 'xavier': mutil.initialize_weights_xavier([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) else: mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) mutil.initialize_weights(self.conv_final, 0) def forward(self, x): res = [] for xi in x: x1 = self.lrelu(self.conv1(xi)) x2 = self.lrelu(self.conv2(torch.cat((xi, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((xi, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((xi, x1, x2, x3), 1))) x5 = self.lrelu(self.conv5(torch.cat((xi, x1, x2, x3, x4), 1))) res.append(x5) res = torch.cat(res, dim=1) res = self.conv_final(res) return res def subnet(net_structure, init='xavier'): def constructor(channel_in, channel_out, groups=None): if net_structure == 'DBNet': if init == 'xavier': return DenseBlock(channel_in, channel_out, init) elif init == 'xavier_v2': return DenseBlock_v2(channel_in, channel_out, groups, 'xavier') else: return DenseBlock(channel_in, channel_out) else: return None return constructor