# Standard libraries import itertools import numpy as np # PyTorch import torch import torch.nn as nn # Local from . import JPEG_utils class rgb_to_ycbcr_jpeg(nn.Module): """ Converts RGB image to YCbCr """ def __init__(self): super(rgb_to_ycbcr_jpeg, self).__init__() matrix = np.array( [[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5], [0.5, -0.418688, -0.081312]], dtype=np.float32).T self.shift = nn.Parameter(torch.tensor([0., 128., 128.])) # self.matrix = nn.Parameter(torch.from_numpy(matrix)) def forward(self, image): image = image.permute(0, 2, 3, 1) result = torch.tensordot(image, self.matrix, dims=1) + self.shift # result = torch.from_numpy(result) result.view(image.shape) return result class chroma_subsampling(nn.Module): """ Chroma subsampling on CbCv channels Input: image(tensor): batch x height x width x 3 Output: y(tensor): batch x height x width cb(tensor): batch x height/2 x width/2 cr(tensor): batch x height/2 x width/2 """ def __init__(self): super(chroma_subsampling, self).__init__() def forward(self, image): image_2 = image.permute(0, 3, 1, 2).clone() avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2), count_include_pad=False) cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1)) cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1)) cb = cb.permute(0, 2, 3, 1) cr = cr.permute(0, 2, 3, 1) return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3) class block_splitting(nn.Module): """ Splitting image into patches Input: image(tensor): batch x height x width Output: patch(tensor): batch x h*w/64 x h x w """ def __init__(self): super(block_splitting, self).__init__() self.k = 8 def forward(self, image): height, width = image.shape[1:3] # print(height, width) batch_size = image.shape[0] # print(image.shape) image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k) image_transposed = image_reshaped.permute(0, 1, 3, 2, 4) return image_transposed.contiguous().view(batch_size, -1, self.k, self.k) class dct_8x8(nn.Module): """ Discrete Cosine Transformation Input: image(tensor): batch x height x width Output: dcp(tensor): batch x height x width """ def __init__(self): super(dct_8x8, self).__init__() tensor = np.zeros((8, 8, 8, 8), dtype=np.float32) for x, y, u, v in itertools.product(range(8), repeat=4): tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos( (2 * y + 1) * v * np.pi / 16) alpha = np.array([1. / np.sqrt(2)] + [1] * 7) # self.tensor = nn.Parameter(torch.from_numpy(tensor).float()) self.scale = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha) * 0.25).float() ) def forward(self, image): image = image - 128 result = self.scale * torch.tensordot(image, self.tensor, dims=2) result.view(image.shape) return result class y_quantize(nn.Module): """ JPEG Quantization for Y channel Input: image(tensor): batch x height x width rounding(function): rounding function to use factor(float): Degree of compression Output: image(tensor): batch x height x width """ def __init__(self, rounding, factor=1): super(y_quantize, self).__init__() self.rounding = rounding self.factor = factor self.y_table = JPEG_utils.y_table def forward(self, image): image = image.float() / (self.y_table * self.factor) image = self.rounding(image) return image class c_quantize(nn.Module): """ JPEG Quantization for CrCb channels Input: image(tensor): batch x height x width rounding(function): rounding function to use factor(float): Degree of compression Output: image(tensor): batch x height x width """ def __init__(self, rounding, factor=1): super(c_quantize, self).__init__() self.rounding = rounding self.factor = factor self.c_table = JPEG_utils.c_table def forward(self, image): image = image.float() / (self.c_table * self.factor) image = self.rounding(image) return image class compress_jpeg(nn.Module): """ Full JPEG compression algortihm Input: imgs(tensor): batch x 3 x height x width rounding(function): rounding function to use factor(float): Compression factor Ouput: compressed(dict(tensor)): batch x h*w/64 x 8 x 8 """ def __init__(self, rounding=torch.round, factor=1): super(compress_jpeg, self).__init__() self.l1 = nn.Sequential( rgb_to_ycbcr_jpeg(), # comment this line if no subsampling chroma_subsampling() ) self.l2 = nn.Sequential( block_splitting(), dct_8x8() ) self.c_quantize = c_quantize(rounding=rounding, factor=factor) self.y_quantize = y_quantize(rounding=rounding, factor=factor) def forward(self, image): y, cb, cr = self.l1(image*255) # modify # y, cb, cr = result[:,:,:,0], result[:,:,:,1], result[:,:,:,2] components = {'y': y, 'cb': cb, 'cr': cr} for k in components.keys(): comp = self.l2(components[k]) # print(comp.shape) if k in ('cb', 'cr'): comp = self.c_quantize(comp) else: comp = self.y_quantize(comp) components[k] = comp return components['y'], components['cb'], components['cr']