from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor import torch import librosa model_id = "facebook/mms-lid-1024" processor = AutoFeatureExtractor.from_pretrained(model_id) model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id) LID_SAMPLING_RATE = 16_000 LID_TOPK = 10 LID_THRESHOLD = 0.33 LID_LANGUAGES = {} with open(f"data/lid/all_langs.tsv") as f: for line in f: iso, name = line.split(" ", 1) LID_LANGUAGES[iso] = name def identify(audio_source=None, microphone=None, file_upload=None): if audio_source is None and microphone is None and file_upload is None: # HACK: need to handle this case for some reason return {} if type(microphone) is dict: # HACK: microphone variable is a dict when running on examples microphone = microphone["name"] audio_fp = ( file_upload if "upload" in str(audio_source or "").lower() else microphone ) if audio_fp is None: return "ERROR: You have to either use the microphone or upload an audio file" audio_samples = librosa.load(audio_fp, sr=LID_SAMPLING_RATE, mono=True)[0] inputs = processor( audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt" ) # set device if torch.cuda.is_available(): device = torch.device("cuda") elif ( hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built() ): device = torch.device("mps") else: device = torch.device("cpu") model.to(device) inputs = inputs.to(device) with torch.no_grad(): logit = model(**inputs).logits logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1) scores, indices = torch.topk(logit_lsm, 5, dim=-1) scores, indices = torch.exp(scores).to("cpu").tolist(), indices.to("cpu").tolist() iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)} if max(iso2score.values()) < LID_THRESHOLD: return "Low confidence in the language identification predictions. Output is not shown!" return {LID_LANGUAGES[iso]: score for iso, score in iso2score.items()} LID_EXAMPLES = [ [None, "./assets/english.mp3", None], [None, "./assets/tamil.mp3", None], [None, "./assets/burmese.mp3", None], ]