File size: 29,009 Bytes
7c4b306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Classes to support Vision-Encoder-Text-Decoder architectures"""
import timeit

from typing import Optional

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
#from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from transformers.utils import logging
from transformers.models.auto.configuration_auto import AutoConfig
from transformers.models.auto.modeling_auto import AutoModel, AutoModelForCausalLM
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import VisionEncoderDecoderConfig
import inspect

from .gpt2 import ThisGPT2LMHeadModel
from .gpt2 import ThisGPT2Config
from .xglm import ThisXGLMForCausalLM
from .xglm import ThisXGLMConfig
from .opt import ThisOPTForCausalLM
from .opt import ThisOPTConfig

# Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    if decoder_start_token_id is None:
        raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "SmallCapConfig"

VISION_ENCODER_DECODER_START_DOCSTRING = r"""
    This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model
    as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via
    [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
    function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
    generative task, like image captioning.

    The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
    tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
    Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
    Zhou, Wei Li, Peter J. Liu.

    Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained
    Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical
    character recognition (OCR) yields a significant performance improvement.

    After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any
    other models (see the examples for more information).

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using a feature extractor (e.g. if you use ViT as the encoder,
            you should use [`ViTFeatureExtractor`]). See [`ViTFeatureExtractor.__call__`] for details.
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the
            right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`.
        decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        encoder_outputs (`tuple(torch.FloatTensor)`, *optional*):
            This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor
            of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
            decoder.
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
            representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
            into associated vectors than the model's internal embedding lookup matrix.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
            ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
        kwargs: (*optional*) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:

            - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
            - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
"""

class SmallCapConfig(VisionEncoderDecoderConfig):
    model_type = "smallcap"

    def __init__(
        self,
        **kwargs,
    ):
        super().__init__(**kwargs)
        

class SmallCap(PreTrainedModel):
    r"""
    [`VisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with
    one of the base vision model classes of the library as encoder and another one as decoder when created with the
    :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and
    :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder.
    """
    config_class = SmallCapConfig
    base_model_prefix = "smallcap"
    main_input_name = "pixel_values"

    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
    ):
        if config is None and (encoder is None or decoder is None):
            raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
        if config is None:
            config = SmallCapConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        if config.decoder.cross_attention_hidden_size is not None:
            if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
                raise ValueError(
                    "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal#"
                    f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
                    f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
                    " `config.encoder.hidden_size`."
                )

        # initialize with config
        # make sure input & output embeddings is not tied
        config.tie_word_embeddings = False
        super().__init__(config)

        if encoder is None:
            encoder = AutoModel.from_config(config.encoder)

        if decoder is None:
            decoder = AutoModelForCausalLM.from_config(config.decoder)

        self.encoder = encoder.vision_model
        self.encoder.main_input_name = 'pixel_values'
        self.decoder = decoder
        # make sure that the individual model's config refers to the shared config
        # so that the updates to the config will be synced
        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def get_output_embeddings(self):
        return self.decoder.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        return self.decoder.set_output_embeddings(new_embeddings)

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        # At the moment fast initialization is not supported for composite models
        if kwargs.get("_fast_init", False):
            logger.warning(
                "Fast initialization is currently not supported for VisionEncoderDecoderModel. "
                "Falling back to slow initialization..."
            )
        kwargs["_fast_init"] = False
        return super().from_pretrained(*args, **kwargs)

    @classmethod
    def from_encoder_decoder_pretrained(
        cls,
        encoder_pretrained_model_name_or_path: str = None,
        decoder_pretrained_model_name_or_path: str = None,
        cross_attention_reduce_factor: int = None,
        *model_args,
        **kwargs
    ) -> PreTrainedModel:
        r"""
        Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
        checkpoints.


        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you need to first set it back in training mode with `model.train()`.

        Params:
            encoder_pretrained_model_name_or_path (`str`, *optional*):
                Information necessary to initiate the image encoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
                      example is `google/vit-base-patch16-224-in21k`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
                Information necessary to initiate the text decoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args (remaining positional arguments, *optional*):
                All remaning positional arguments will be passed to the underlying model's `__init__` method.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`).

                - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
                - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
                - To update the parent model configuration, do not use a prefix for each configuration parameter.

                Behaves differently depending on whether a `config` is provided or automatically loaded.

        Example:

        ```python
        >>> from transformers import VisionEncoderDecoderModel

        >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
        >>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
        ...     "google/vit-base-patch16-224-in21k", "bert-base-uncased"
        ... )
        >>> # saving model after fine-tuning
        >>> model.save_pretrained("./vit-bert")
        >>> # load fine-tuned model
        >>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
        ```"""

        kwargs_encoder = {
            argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
        }

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        # remove encoder, decoder kwargs from kwargs
        for key in kwargs_encoder.keys():
            del kwargs["encoder_" + key]
        for key in kwargs_decoder.keys():
            del kwargs["decoder_" + key]

        # Load and initialize the encoder and decoder
        # The distinction between encoder and decoder at the model level is made
        # by the value of the flag `is_decoder` that we need to set correctly.
        encoder = kwargs_encoder.pop("model", None)
        if encoder is None:
            if encoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_encoder:
                encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
                    encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
                )

                if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
                    logger.info(
                        f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
                        "from a decoder model. Cross-attention and casual mask are disabled."
                    )
                    encoder_config.is_decoder = False
                    encoder_config.add_cross_attention = False

                kwargs_encoder["config"] = encoder_config

            encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)

        decoder = kwargs_decoder.pop("model", None)
        if decoder is None:
            if decoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_decoder:
                if "xglm" in decoder_pretrained_model_name_or_path:
                    decoder_config, kwargs_decoder = ThisXGLMConfig.from_pretrained(
                        decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
                    )

                elif "opt" in decoder_pretrained_model_name_or_path:
                    decoder_config, kwargs_decoder = ThisOPTConfig.from_pretrained(
                        decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
                    )

                else:
                    decoder_config, kwargs_decoder = ThisGPT2Config.from_pretrained(
                        decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
                    )

                if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
                    logger.info(
                        f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
                        f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
                        f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
                    )
                    decoder_config.is_decoder = True
                    decoder_config.add_cross_attention = True
                decoder_config.encoder_hidden_size = encoder.config.vision_config.hidden_size
                decoder_config.cross_attention_reduce_factor = cross_attention_reduce_factor
                kwargs_decoder["config"] = decoder_config
            
            if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
                logger.warning(
                    f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
                    f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
                    "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
                    "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
                    "`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
                )
            
            #decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
            if "xglm" in decoder_pretrained_model_name_or_path:
                decoder = ThisXGLMForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)

            elif "opt" in decoder_pretrained_model_name_or_path:
                decoder = ThisOPTForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
            else:
                decoder = ThisGPT2LMHeadModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)

        # instantiate config with corresponding kwargs
        config = SmallCapConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)

        # make sure input & output embeddings is not tied
        config.tie_word_embeddings = False
        return cls(encoder=encoder, decoder=decoder, config=config)

    def forward(
        self,
        pixel_values=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        encoder_outputs=None,
        past_key_values=None,
        decoder_inputs_embeds=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import TrOCRProcessor, VisionEncoderDecoderModel
        >>> import requests
        >>> from PIL import Image
        >>> import torch

        >>> processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
        >>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")

        >>> # load image from the IAM dataset
        >>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

        >>> # training
        >>> model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
        >>> model.config.pad_token_id = processor.tokenizer.pad_token_id
        >>> model.config.vocab_size = model.config.decoder.vocab_size

        >>> pixel_values = processor(image, return_tensors="pt").pixel_values
        >>> text = "hello world"
        >>> labels = processor.tokenizer(text, return_tensors="pt").input_ids
        >>> outputs = model(pixel_values=pixel_values, labels=labels)
        >>> loss = outputs.loss

        >>> # inference (generation)
        >>> generated_ids = model.generate(pixel_values)
        >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        ```"""
 
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }
        if encoder_outputs is None:
            if pixel_values is None:
                raise ValueError("You have to specify pixel_values")
            
            encoder_outputs = self.encoder(
                pixel_values=pixel_values,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_encoder,
            )
        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = BaseModelOutput(*encoder_outputs)
        else:
            encoder_outputs = BaseModelOutput(encoder_outputs, None)

        encoder_hidden_states = encoder_outputs[0]

        # else:
        encoder_attention_mask = None
        if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
            decoder_input_ids = shift_tokens_right(
                labels, self.config.pad_token_id, self.config.decoder_start_token_id
            )
        
        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Compute loss independent from decoder (as some shift the logits inside them)
        loss = None
        if labels is not None:
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1))
        
        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

    def prepare_inputs_for_generation(
        self, input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
    ):
        decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past=past)
        decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
        input_dict = {
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "decoder_input_ids": decoder_inputs["input_ids"],
            "encoder_outputs": encoder_outputs,
            "past_key_values": decoder_inputs["past_key_values"],
            "use_cache": use_cache,
        }
        return input_dict

    def resize_token_embeddings(self, *args, **kwargs):
        raise NotImplementedError(
            "Resizing the embedding layers via the VisionEncoderDecoderModel directly is not supported.Please use the"
            " respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))"
        )

    def _reorder_cache(self, past, beam_idx):
        # apply decoder cache reordering here
        return self.decoder._reorder_cache(past, beam_idx)