File size: 5,408 Bytes
6e443ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hello world\n"
     ]
    }
   ],
   "source": [
    "print(\"hello world\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\Ritesh.Thawkar\\Desktop\\website-demos\\env\\Lib\\site-packages\\pinecone\\data\\index.py:1: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from tqdm.autonotebook import tqdm\n"
     ]
    }
   ],
   "source": [
    "from pinecone import Pinecone\n",
    "\n",
    "# Initialize the Pinecone client\n",
    "pc = Pinecone(api_key='ca8e6a33-7355-453f-ad4b-80c8a1c6a9c7')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define your index name\n",
    "index_name = 'vector-store-index'\n",
    "index = pc.Index(index_name)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'dimension': 768,\n",
       " 'index_fullness': 0.0,\n",
       " 'namespaces': {'': {'vector_count': 16294}},\n",
       " 'total_vector_count': 16294}"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "index.describe_index_stats()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "vector_ids = [str(i) for i in range(1, 16295)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "from concurrent.futures import ThreadPoolExecutor, as_completed"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def update_vector(vector_id):\n",
    "    try:\n",
    "        # Fetch the vector\n",
    "        vector = index.fetch([vector_id])\n",
    "        \n",
    "        # Check if the vector exists\n",
    "        if vector and vector['vectors']:\n",
    "            prev_text = vector['vectors'][vector_id].metadata['text']\n",
    "            \n",
    "            # Update the vector's metadata\n",
    "            index.update(\n",
    "                id=vector_id, \n",
    "                set_metadata={\"context\": prev_text},\n",
    "            )\n",
    "            return f\"Updated vector {vector_id}.\"\n",
    "        else:\n",
    "            return f\"Vector {vector_id} not found.\"\n",
    "    except Exception as e:\n",
    "        return f\"Error updating vector {vector_id}: {e}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Use ThreadPoolExecutor for parallel execution\n",
    "with ThreadPoolExecutor(max_workers=10) as executor:  # Adjust max_workers as needed\n",
    "    future_to_vector_id = {executor.submit(update_vector, vector_id): vector_id for vector_id in vector_ids}\n",
    "    \n",
    "    for future in as_completed(future_to_vector_id):\n",
    "        vector_id = future_to_vector_id[future]\n",
    "        try:\n",
    "            result = future.result()\n",
    "        except Exception as e:\n",
    "            print(f\"Error processing vector {vector_id}: {e}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Specify the ID of the vector you want to update\n",
    "vector_ids = [str(i) for i in range(1, 16295)]\n",
    "\n",
    "for vector_id in vector_ids:\n",
    "    # Fetch the vector\n",
    "    vector = index.fetch([vector_id])\n",
    "\n",
    "    prev_text = vector['vectors'][vector_id].metadata['text']\n",
    "\n",
    "    index.update(\n",
    "        id=vector_id, \n",
    "        set_metadata={\"context\": prev_text},\n",
    "    )\n",
    "\n",
    "# Check if the vector exists\n",
    "# if vector and vector.ids:\n",
    "#     # Get the current metadata\n",
    "#     current_metadata = vector.vectors[vector_id].metadata\n",
    "    \n",
    "#     # Update the key name in the metadata\n",
    "#     if 'text' in current_metadata:\n",
    "#         current_metadata['context'] = current_metadata.pop('text')\n",
    "    \n",
    "#     # Upsert the updated vector back to the index\n",
    "#     index.upsert(vectors=[(vector_id, vector.vectors[vector_id].values, current_metadata)])\n",
    "#     print(f\"Updated metadata for vector {vector_id}.\")\n",
    "# else:\n",
    "#     print(f\"Vector with ID {vector_id} not found.\")\n",
    "\n",
    "# Optionally, close the index\n",
    "# index.close()\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}