Spaces:
Running
Running
import nltk | |
nltk.download('punkt_tab') | |
import os | |
from dotenv import load_dotenv | |
import asyncio | |
from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect | |
from fastapi.responses import HTMLResponse | |
from fastapi.templating import Jinja2Templates | |
from fastapi.middleware.cors import CORSMiddleware | |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_community.chat_message_histories import ChatMessageHistory | |
from langchain_core.chat_history import BaseChatMessageHistory | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_core.runnables.history import RunnableWithMessageHistory | |
from pinecone import Pinecone | |
from pinecone_text.sparse import BM25Encoder | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.retrievers import PineconeHybridSearchRetriever | |
from langchain.retrievers import ContextualCompressionRetriever | |
from langchain_community.chat_models import ChatPerplexity | |
from langchain.retrievers.document_compressors import CrossEncoderReranker | |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder | |
from langchain_core.prompts import PromptTemplate | |
import re | |
# Load environment variables | |
load_dotenv(".env") | |
USER_AGENT = os.getenv("USER_AGENT") | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
SECRET_KEY = os.getenv("SECRET_KEY") | |
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") | |
HUGGINGFACE_TOKEN = os.getenv("huggingface_api_key") | |
SESSION_ID_DEFAULT = "abc123" | |
# Set environment variables | |
os.environ['USER_AGENT'] = USER_AGENT | |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY | |
os.environ["TOKENIZERS_PARALLELISM"] = 'true' | |
# Initialize FastAPI app and CORS | |
app = FastAPI() | |
origins = ["*"] # Adjust as needed | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
templates = Jinja2Templates(directory="templates") | |
# Function to initialize Pinecone connection | |
def initialize_pinecone(index_name: str): | |
try: | |
pc = Pinecone(api_key=PINECONE_API_KEY) | |
return pc.Index(index_name) | |
except Exception as e: | |
print(f"Error initializing Pinecone: {e}") | |
raise | |
################################################## | |
## Change down here | |
################################################## | |
# Initialize Pinecone index and BM25 encoder | |
pinecone_index = initialize_pinecone("updated-abu-dhabi-government") | |
bm25 = BM25Encoder().load("./updated-abu-dhabi-governemnt.json") | |
################################################## | |
################################################## | |
# Initialize models and retriever | |
embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True}) | |
retriever = PineconeHybridSearchRetriever( | |
embeddings=embed_model, | |
sparse_encoder=bm25, | |
index=pinecone_index, | |
top_k=10, | |
alpha=0.5, | |
) | |
llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=512, max_retries=2) | |
# Initialize LLM | |
# llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=512, max_retries=2) | |
# Initialize Reranker | |
# model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base") | |
# compressor = CrossEncoderReranker(model=model, top_n=10) | |
# compression_retriever = ContextualCompressionRetriever( | |
# base_compressor=compressor, base_retriever=retriever | |
# ) | |
# Contextualization prompt and retriever | |
contextualize_q_system_prompt = """Given a chat history and the latest user question \ | |
which might reference context in the chat history, formulate a standalone question \ | |
which can be understood without the chat history. Do NOT answer the question, \ | |
just reformulate it if needed and otherwise return it as is. | |
""" | |
contextualize_q_prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", contextualize_q_system_prompt), | |
MessagesPlaceholder("chat_history"), | |
("human", "{input}") | |
] | |
) | |
history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt) | |
# QA system prompt and chain | |
qa_system_prompt = """ You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. | |
If you don't know the answer, simply state that you don't know. | |
YOUR ANSWER SHOULD BE IN '{language}' LANGUAGE. | |
When responding to queries, follow these guidelines: | |
1. Provide Clear Answers: | |
- You have to answer in that language based on the given language of the answer. If it is English, answer it in English; if it is Arabic, you should answer it in Arabic. | |
- Ensure the response directly addresses the query with accurate and relevant information. | |
- Do not give long answers. Provide detailed but concise responses. | |
2. Formatting for Readability: | |
- Provide the entire response in proper markdown format. | |
- Use structured Markdown elements such as headings, subheadings, lists, tables, and links. | |
- Use emphasis on headings, important texts, and phrases. | |
3. Proper Citations: | |
- Always use inline citations with embedded source URLs. | |
- The inline citations should be in the format [1], [2], etc. | |
- DO NOT INCLUDE THE 'References' SECTION IN THE RESPONSE. | |
FOLLOW ALL THE GIVEN INSTRUCTIONS, FAILURE TO DO SO WILL RESULT IN THE TERMINATION OF THE CHAT. | |
== CONTEXT == | |
{context} | |
""" | |
qa_prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", qa_system_prompt), | |
MessagesPlaceholder("chat_history"), | |
("human", "{input}") | |
] | |
) | |
document_prompt = PromptTemplate(input_variables=["page_content", "source"], template="{page_content} \n\n Source: {source}") | |
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt, document_prompt=document_prompt) | |
# Retrieval and Generative (RAG) Chain | |
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain) | |
# Chat message history storage | |
store = {} | |
def get_session_history(session_id: str) -> BaseChatMessageHistory: | |
if session_id not in store: | |
store[session_id] = ChatMessageHistory() | |
return store[session_id] | |
# Conversational RAG chain with message history | |
conversational_rag_chain = RunnableWithMessageHistory( | |
rag_chain, | |
get_session_history, | |
input_messages_key="input", | |
history_messages_key="chat_history", | |
language_message_key="language", | |
output_messages_key="answer", | |
) | |
# WebSocket endpoint with streaming | |
async def websocket_endpoint(websocket: WebSocket): | |
await websocket.accept() | |
print(f"Client connected: {websocket.client}") | |
session_id = None | |
try: | |
while True: | |
data = await websocket.receive_json() | |
question = data.get('question') | |
language = data.get('language') | |
if "en" in language: | |
language = "English" | |
else: | |
language = "Arabic" | |
session_id = data.get('session_id', SESSION_ID_DEFAULT) | |
# Process the question | |
try: | |
# Define an async generator for streaming | |
async def stream_response(): | |
complete_response = "" | |
context = {} | |
async for chunk in conversational_rag_chain.astream( | |
{"input": question, 'language': language}, | |
config={"configurable": {"session_id": session_id}} | |
): | |
if "context" in chunk: | |
context = chunk['context'] | |
# Send each chunk to the client | |
if "answer" in chunk: | |
complete_response += chunk['answer'] | |
await websocket.send_json({'response': chunk['answer']}) | |
if context: | |
citations = re.findall(r'\[(\d+)\]', complete_response) | |
citation_numbers = list(map(int, citations)) | |
sources = dict() | |
backup = dict() | |
i=1 | |
for index, doc in enumerate(context): | |
if (index+1) in citation_numbers: | |
sources[f"[{index+1}]"] = doc.metadata["source"] | |
else: | |
if doc.metadata["source"] not in backup.values(): | |
backup[f"[{i}]"] = doc.metadata["source"] | |
i += 1 | |
if sources: | |
await websocket.send_json({'sources': sources}) | |
else: | |
await websocket.send_json({'sources': backup}) | |
await stream_response() | |
except Exception as e: | |
print(f"Error during message handling: {e}") | |
await websocket.send_json({'response': "Something went wrong, Please try again." + str(e)}) | |
except WebSocketDisconnect: | |
print(f"Client disconnected: {websocket.client}") | |
if session_id: | |
store.pop(session_id, None) | |
# Home route | |
async def read_index(request: Request): | |
return templates.TemplateResponse("chat.html", {"request": request}) | |