Ritesh-hf's picture
Update app.py
ed89c92 verified
raw
history blame
9.13 kB
import nltk
nltk.download('punkt_tab')
import os
from dotenv import load_dotenv
import asyncio
from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from fastapi.middleware.cors import CORSMiddleware
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from pinecone import Pinecone
from pinecone_text.sparse import BM25Encoder
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.retrievers import PineconeHybridSearchRetriever
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.chat_models import ChatPerplexity
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from langchain_core.prompts import PromptTemplate
import re
# Load environment variables
load_dotenv(".env")
USER_AGENT = os.getenv("USER_AGENT")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
SECRET_KEY = os.getenv("SECRET_KEY")
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
SESSION_ID_DEFAULT = "abc123"
# Set environment variables
os.environ['USER_AGENT'] = USER_AGENT
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["TOKENIZERS_PARALLELISM"] = 'true'
# Initialize FastAPI app and CORS
app = FastAPI()
origins = ["*"] # Adjust as needed
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
templates = Jinja2Templates(directory="templates")
# Function to initialize Pinecone connection
def initialize_pinecone(index_name: str):
try:
pc = Pinecone(api_key=PINECONE_API_KEY)
return pc.Index(index_name)
except Exception as e:
print(f"Error initializing Pinecone: {e}")
raise
##################################################
## Change down here
##################################################
# #### This is for UAE Economic Department Website
pinecone_index = initialize_pinecone("saudi-arabia-ministry-of-justice")
bm25 = BM25Encoder().load("./saudi-arabia-bm25-encoder.json")
##################################################
##################################################
# Initialize models and retriever
embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True})
retriever = PineconeHybridSearchRetriever(
embeddings=embed_model,
sparse_encoder=bm25,
index=pinecone_index,
top_k=20,
alpha=0.5,
)
# Initialize LLM
llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=512, max_retries=2)
# Initialize Reranker
# model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
# compressor = CrossEncoderReranker(model=model, top_n=10)
# compression_retriever = ContextualCompressionRetriever(
# base_compressor=compressor, base_retriever=retriever
# )
from langchain.retrievers.document_compressors import LLMChainExtractor
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
# Contextualization prompt and retriever
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is.
"""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}")
]
)
history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt)
# QA system prompt and chain
qa_system_prompt = """ You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively.
If you don't know the answer, simply state that you don't know.
Your answer should be in {language} language.
When responding to queries, follow these guidelines:
1. Provide Clear Answers:
- Based on the language of the question, you have to answer in that language. E.g., if the question is in English, then answer in English; if the question is in Arabic, you should answer in Arabic.
- Ensure the response directly addresses the query with accurate and relevant information.
- Do not give long answers. Provide detailed but concise responses.
2. Formatting for Readability:
- Provide the entire response in proper markdown format.
- Use structured Maekdown elements such as headings, subheading, lists, tables, and links.
- Use emaphsis on headings, important texts and phrases.
3. Proper Citations:
- ALWAYS USE INLINE CITATIONS with embed source URLs where users can verify information or explore further.
- The inline citations should be in the format [1], [2], etc.
- DO not inlcude references at the end of response.
FOLLOW ALL THE GIVEN INSTRUCTIONS, FAILURE TO DO SO WILL RESULT IN TERMINATION OF THE CHAT.
{context}
"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}")
]
)
document_prompt = PromptTemplate(input_variables=["page_content", "source"], template="{page_content} \n\n Source: {source}")
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt, document_prompt=document_prompt)
# Retrieval and Generative (RAG) Chain
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
# Chat message history storage
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
# Conversational RAG chain with message history
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
language_message_key="language",
output_messages_key="answer",
)
# WebSocket endpoint with streaming
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
print(f"Client connected: {websocket.client}")
session_id = None
try:
while True:
data = await websocket.receive_json()
question = data.get('question')
language = data.get('language')
if "en" in language:
language = "English"
else:
language = "Arabic"
session_id = data.get('session_id', SESSION_ID_DEFAULT)
# Process the question
try:
# Define an async generator for streaming
async def stream_response():
complete_response = ""
context = {}
async for chunk in conversational_rag_chain.astream(
{"input": question, 'language': language},
config={"configurable": {"session_id": session_id}}
):
if "context" in chunk:
context = chunk['context']
# Send each chunk to the client
if "answer" in chunk:
complete_response += chunk['answer']
await websocket.send_json({'response': chunk['answer']})
if context:
citations = re.findall(r'\[(\d+)\]', complete_response)
citation_numbers = list(map(int, citations))
sources = dict()
for index, doc in enumerate(context):
if (index+1) in citation_numbers:
sources[f"[{index+1}]"] = doc.metadata["source"]
await websocket.send_json({'sources': sources})
await stream_response()
except Exception as e:
print(f"Error during message handling: {e}")
await websocket.send_json({'response': "Something went wrong, Please try again.." + str(e)})
except WebSocketDisconnect:
print(f"Client disconnected: {websocket.client}")
if session_id:
store.pop(session_id, None)
# Home route
@app.get("/", response_class=HTMLResponse)
async def read_index(request: Request):
return templates.TemplateResponse("chat.html", {"request": request})