Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,8 @@ from pinecone_text.sparse import BM25Encoder
|
|
20 |
from langchain_huggingface import HuggingFaceEmbeddings
|
21 |
from langchain_community.retrievers import PineconeHybridSearchRetriever
|
22 |
from langchain_groq import ChatGroq
|
|
|
|
|
23 |
|
24 |
# Load environment variables
|
25 |
# load_dotenv(".env")
|
@@ -56,14 +58,9 @@ def initialize_pinecone(index_name: str):
|
|
56 |
##################################################
|
57 |
## Change down here
|
58 |
##################################################
|
59 |
-
|
60 |
-
|
61 |
# #### This is for UAE Economic Department Website
|
62 |
pinecone_index = initialize_pinecone("saudi-arabia-ministry-of-justice")
|
63 |
bm25 = BM25Encoder().load("./saudi-arabia-bm25-encoder.json")
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
##################################################
|
68 |
##################################################
|
69 |
|
@@ -74,13 +71,19 @@ retriever = PineconeHybridSearchRetriever(
|
|
74 |
embeddings=embed_model,
|
75 |
sparse_encoder=bm25,
|
76 |
index=pinecone_index,
|
77 |
-
top_k=
|
78 |
alpha=0.5
|
79 |
)
|
80 |
|
81 |
# Initialize LLM
|
82 |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, max_tokens=1024, max_retries=2)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# Contextualization prompt and retriever
|
85 |
contextualize_q_system_prompt = """Given a chat history and the latest user question \
|
86 |
which might reference context in the chat history, formulate a standalone question \
|
@@ -94,7 +97,7 @@ contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
|
94 |
("human", "{input}")
|
95 |
]
|
96 |
)
|
97 |
-
history_aware_retriever = create_history_aware_retriever(llm,
|
98 |
|
99 |
# QA system prompt and chain
|
100 |
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \
|
@@ -114,7 +117,7 @@ When responding to queries, follow these guidelines: \
|
|
114 |
- Downloadable Materials: Provide links to any relevant downloadable resources if applicable. \
|
115 |
|
116 |
3. Formatting for Readability: \
|
117 |
-
- The answer should be in a proper
|
118 |
- For arabic language response align the text to right and convert numbers also.
|
119 |
- Double check if the language of answer is correct or not.
|
120 |
- Use bullet points or numbered lists where applicable to present information clearly. \
|
|
|
20 |
from langchain_huggingface import HuggingFaceEmbeddings
|
21 |
from langchain_community.retrievers import PineconeHybridSearchRetriever
|
22 |
from langchain_groq import ChatGroq
|
23 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
24 |
+
from langchain.retrievers.document_compressors import FlashrankRerank
|
25 |
|
26 |
# Load environment variables
|
27 |
# load_dotenv(".env")
|
|
|
58 |
##################################################
|
59 |
## Change down here
|
60 |
##################################################
|
|
|
|
|
61 |
# #### This is for UAE Economic Department Website
|
62 |
pinecone_index = initialize_pinecone("saudi-arabia-ministry-of-justice")
|
63 |
bm25 = BM25Encoder().load("./saudi-arabia-bm25-encoder.json")
|
|
|
|
|
|
|
64 |
##################################################
|
65 |
##################################################
|
66 |
|
|
|
71 |
embeddings=embed_model,
|
72 |
sparse_encoder=bm25,
|
73 |
index=pinecone_index,
|
74 |
+
top_k=10,
|
75 |
alpha=0.5
|
76 |
)
|
77 |
|
78 |
# Initialize LLM
|
79 |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, max_tokens=1024, max_retries=2)
|
80 |
|
81 |
+
# Initialize Reranker
|
82 |
+
compressor = FlashrankRerank()
|
83 |
+
compression_retriever = ContextualCompressionRetriever(
|
84 |
+
base_compressor=compressor, base_retriever=retriever
|
85 |
+
)
|
86 |
+
|
87 |
# Contextualization prompt and retriever
|
88 |
contextualize_q_system_prompt = """Given a chat history and the latest user question \
|
89 |
which might reference context in the chat history, formulate a standalone question \
|
|
|
97 |
("human", "{input}")
|
98 |
]
|
99 |
)
|
100 |
+
history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt)
|
101 |
|
102 |
# QA system prompt and chain
|
103 |
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \
|
|
|
117 |
- Downloadable Materials: Provide links to any relevant downloadable resources if applicable. \
|
118 |
|
119 |
3. Formatting for Readability: \
|
120 |
+
- The answer should be in a proper Markdown format with appropriate tags. \
|
121 |
- For arabic language response align the text to right and convert numbers also.
|
122 |
- Double check if the language of answer is correct or not.
|
123 |
- Use bullet points or numbered lists where applicable to present information clearly. \
|