import nltk nltk.download('punkt_tab') import os from dotenv import load_dotenv import asyncio from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates from fastapi.middleware.cors import CORSMiddleware from langchain.chains import create_history_aware_retriever, create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_community.chat_message_histories import ChatMessageHistory from langchain.schema import BaseChatMessageHistory from langchain.prompts.chat import ChatPromptTemplate, MessagesPlaceholder from langchain_core.runnables import RunnableWithMessageHistory from pinecone import Pinecone from pinecone_text.sparse import BM25Encoder from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.retrievers import PineconeHybridSearchRetriever from langchain.retrievers import ContextualCompressionRetriever from langchain_community.chat_models import ChatOpenAI from langchain.retrievers.document_compressors import CrossEncoderReranker from langchain_community.cross_encoders import HuggingFaceCrossEncoder from langchain.prompts import PromptTemplate import re from langchain_huggingface import HuggingFaceEmbeddings # Load environment variables load_dotenv(".env") USER_AGENT = os.getenv("USER_AGENT") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") SECRET_KEY = os.getenv("SECRET_KEY") PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") SESSION_ID_DEFAULT = "abc123" # Set environment variables os.environ['USER_AGENT'] = USER_AGENT os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY os.environ["TOKENIZERS_PARALLELISM"] = 'true' # Initialize FastAPI app and CORS app = FastAPI() origins = ["*"] # Adjust as needed app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) templates = Jinja2Templates(directory="templates") # Function to initialize Pinecone connection def initialize_pinecone(index_name: str): try: pc = Pinecone(api_key=PINECONE_API_KEY) return pc.Index(index_name) except Exception as e: print(f"Error initializing Pinecone: {e}") raise ################################################## ## Change down here ################################################## # Initialize Pinecone index and BM25 encoder pinecone_index = initialize_pinecone("updated-mbzuai-policies") bm25 = BM25Encoder().load("./mbzuai-policies.json") ################################################## ################################################## # Initialize models and retriever embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True}) retriever = PineconeHybridSearchRetriever( embeddings=embed_model, sparse_encoder=bm25, index=pinecone_index, top_k=20, alpha=0.5, ) # Initialize LLM llm = ChatOpenAI(temperature=0, model_name="gpt-4o-mini", max_tokens=512) # Initialize Reranker model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base") compressor = CrossEncoderReranker(model=model, top_n=10) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) # Contextualization prompt and retriever contextualize_q_system_prompt = """Given a chat history and the latest user question \ which might reference context in the chat history, formulate a standalone question \ which can be understood without the chat history. Do NOT answer the question, \ just reformulate it if needed and otherwise return it as is. """ contextualize_q_prompt = ChatPromptTemplate.from_messages( [ ("system", contextualize_q_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}") ] ) history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt) # QA system prompt and chain qa_system_prompt = """ You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. If you don't know the answer, state that you don't know. Your answer should be in {language} language. When responding to queries, follow these guidelines: 1. Provide Clear Answers: - Based on the language of the question, you have to answer in that language. E.g., if the question is in English, then answer in English; if the question is in Arabic, you should answer in Arabic. - Ensure the response directly addresses the query with accurate and relevant information. - Do not give long answers. Provide detailed but concise responses. 2. Formatting for Readability: - Provide the entire response in proper markdown format. - Use structured Markdown elements such as headings, subheadings, lists, tables, and links. - Use emphasis on headings, important texts, and phrases. 3. Proper Citations: - ALWAYS USE INLINE CITATIONS with embedded source URLs where users can verify information or explore further. - The inline citations should be in the format [[1]], [[2]], etc., in the response with links to reference sources. - AT THE END OF THE RESPONSE, LIST OUT THE CITATIONS WITH THEIR SOURCES. If there are multiple citations with same source url then only mention that single source url for all of those. FOLLOW ALL THE GIVEN INSTRUCTIONS, FAILURE TO DO SO WILL RESULT IN THE TERMINATION OF THE CHAT. {context} """ qa_prompt = ChatPromptTemplate.from_messages( [ ("system", qa_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}") ] ) document_prompt = PromptTemplate(input_variables=["page_content", "source"], template="{page_content} \n\n Source: {source}") question_answer_chain = create_stuff_documents_chain(llm, qa_prompt, document_prompt=document_prompt) # Retrieval and Generative (RAG) Chain rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain) # Chat message history storage store = {} def get_session_history(session_id: str) -> BaseChatMessageHistory: if session_id not in store: store[session_id] = ChatMessageHistory() return store[session_id] # Conversational RAG chain with message history conversational_rag_chain = RunnableWithMessageHistory( rag_chain, get_session_history, input_messages_key="input", history_messages_key="chat_history", language_message_key="language", output_messages_key="answer", ) # WebSocket endpoint with streaming @app.websocket("/ws") async def websocket_endpoint(websocket: WebSocket): await websocket.accept() print(f"Client connected: {websocket.client}") session_id = None try: while True: data = await websocket.receive_json() question = data.get('question') language = data.get('language') if "en" in language: language = "English" else: language = "Arabic" session_id = data.get('session_id', SESSION_ID_DEFAULT) # Process the question try: # Define an async generator for streaming async def stream_response(): complete_response = "" context = {} async for chunk in conversational_rag_chain.astream( {"input": question, 'language': language}, config={"configurable": {"session_id": session_id}} ): if "context" in chunk: context = chunk['context'] # Send each chunk to the client if "answer" in chunk: complete_response += chunk['answer'] await websocket.send_json({'response': chunk['answer']}) await stream_response() except Exception as e: print(traceback.format_exc()) print(f"Error during message handling: {e}") await websocket.send_json({'response': "Something went wrong, Please try again." + str(e)}) except WebSocketDisconnect: print(f"Client disconnected: {websocket.client}") if session_id: store.pop(session_id, None) # Home route @app.get("/", response_class=HTMLResponse) async def read_index(request: Request): return templates.TemplateResponse("chat.html", {"request": request})