Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
load_dotenv(".env") | |
os.environ['USER_AGENT'] = os.getenv("USER_AGENT") | |
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY") | |
os.environ["TOKENIZERS_PARALLELISM"]='true' | |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_community.chat_message_histories import ChatMessageHistory | |
from langchain_community.document_loaders import WebBaseLoader | |
from langchain_core.chat_history import BaseChatMessageHistory | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_core.runnables.history import RunnableWithMessageHistory | |
from pinecone import Pinecone | |
from pinecone_text.sparse import BM25Encoder | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.retrievers import PineconeHybridSearchRetriever | |
from langchain_groq import ChatGroq | |
from flask import Flask, request | |
from flask_cors import CORS | |
from flask_limiter import Limiter | |
from flask_limiter.util import get_remote_address | |
from flask_socketio import SocketIO, emit | |
app = Flask(__name__) | |
CORS(app) | |
socketio = SocketIO(app, cors_allowed_origins="*") | |
app.config['SESSION_COOKIE_SECURE'] = True # Use HTTPS | |
app.config['SESSION_COOKIE_HTTPONLY'] = True | |
app.config['SESSION_COOKIE_SAMESITE'] = 'Lax' | |
app.config['SECRET_KEY'] = os.getenv('SECRET_KEY') | |
try: | |
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) | |
index_name = "traveler-demo-website-vectorstore" | |
# connect to index | |
pinecone_index = pc.Index(index_name) | |
except: | |
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) | |
index_name = "traveler-demo-website-vectorstore" | |
# connect to index | |
pinecone_index = pc.Index(index_name) | |
bm25 = BM25Encoder().load("bm25_traveler_website.json") | |
embed_model = HuggingFaceEmbeddings(model_name="Alibaba-NLP/gte-large-en-v1.5", model_kwargs={"trust_remote_code":True}) | |
retriever = PineconeHybridSearchRetriever( | |
embeddings=embed_model, | |
sparse_encoder=bm25, | |
index=pinecone_index, | |
top_k=20, | |
alpha=0.5, | |
) | |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.1, max_tokens=1024, max_retries=2) | |
### Contextualize question ### | |
contextualize_q_system_prompt = """Given a chat history and the latest user question \ | |
which might reference context in the chat history, formulate a standalone question \ | |
which can be understood without the chat history. Do NOT answer the question, \ | |
just reformulate it if needed and otherwise return it as is. | |
""" | |
contextualize_q_prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", contextualize_q_system_prompt), | |
MessagesPlaceholder("chat_history"), | |
("human", "{input}") | |
] | |
) | |
history_aware_retriever = create_history_aware_retriever( | |
llm, retriever, contextualize_q_prompt | |
) | |
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following pieces of retrieved context to answer the question. \ | |
Provide links to sources provided in the answer. \ | |
If you don't know the answer, just say that you don't know. \ | |
Do not give extra long answers. \ | |
When responding to queries, your responses should be comprehensive and well-organized. For each response: \ | |
1. Provide Clear Answers \ | |
2. Include Detailed References: \ | |
- Include links to sources and any links or sites where there is a mentioned in the answer. | |
- Links to Sources: Provide URLs to credible sources where users can verify the information or explore further. \ | |
- Downloadable Materials: Include links to any relevant downloadable resources if applicable. \ | |
- Reference Sites: Mention specific websites or platforms that offer additional information. \ | |
3. Formatting for Readability: \ | |
- Bullet Points or Lists: Where applicable, use bullet points or numbered lists to present information clearly. \ | |
- Emphasize Important Information: Use bold or italics to highlight key details. \ | |
4. Organize Content Logically \ | |
Do not include anything about context in the answer. \ | |
{context} | |
""" | |
qa_prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", qa_system_prompt), | |
MessagesPlaceholder("chat_history"), | |
("human", "{input}") | |
] | |
) | |
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt) | |
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain) | |
### Statefully manage chat history ### | |
store = {} | |
def clean_temporary_data(): | |
store = {} | |
def get_session_history(session_id: str) -> BaseChatMessageHistory: | |
if session_id not in store: | |
store[session_id] = ChatMessageHistory() | |
return store[session_id] | |
conversational_rag_chain = RunnableWithMessageHistory( | |
rag_chain, | |
get_session_history, | |
input_messages_key="input", | |
history_messages_key="chat_history", | |
output_messages_key="answer", | |
) | |
# Stream response to client | |
def handle_message(data): | |
question = data.get('question') | |
session_id = data.get('session_id', 'abc123') | |
chain = conversational_rag_chain.pick("answer") | |
try: | |
for chunk in conversational_rag_chain.stream( | |
{"input": question}, | |
config={ | |
"configurable": {"session_id": "abc123"} | |
}, | |
): | |
emit('response', chunk, room=request.sid) | |
except: | |
for chunk in conversational_rag_chain.stream( | |
{"input": question}, | |
config={ | |
"configurable": {"session_id": "abc123"} | |
}, | |
): | |
emit('response', chunk, room=request.sid) | |
if __name__ == '__main__': | |
socketio.run(app, debug=True) | |