Spaces:
Running
Running
import os | |
from dotenv import load_dotenv | |
import asyncio | |
from flask import Flask, request, render_template | |
from flask_cors import CORS | |
from flask_socketio import SocketIO, emit, join_room, leave_room | |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_community.chat_message_histories import ChatMessageHistory | |
from langchain_core.chat_history import BaseChatMessageHistory | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_core.runnables.history import RunnableWithMessageHistory | |
from pinecone import Pinecone | |
from pinecone_text.sparse import BM25Encoder | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.retrievers import PineconeHybridSearchRetriever | |
from langchain_groq import ChatGroq | |
# Load environment variables | |
load_dotenv(".env") | |
USER_AGENT = os.getenv("USER_AGENT") | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
SECRET_KEY = os.getenv("SECRET_KEY") | |
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") | |
SESSION_ID_DEFAULT = "abc123" | |
# Set environment variables | |
os.environ['USER_AGENT'] = USER_AGENT | |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY | |
os.environ["TOKENIZERS_PARALLELISM"] = 'true' | |
# Initialize Flask app and SocketIO with CORS | |
app = Flask(__name__) | |
CORS(app) | |
socketio = SocketIO(app, cors_allowed_origins="*") | |
app.config['SESSION_COOKIE_SECURE'] = True # Use HTTPS | |
app.config['SESSION_COOKIE_HTTPONLY'] = True | |
app.config['SESSION_COOKIE_SAMESITE'] = 'Lax' | |
app.config['SECRET_KEY'] = SECRET_KEY | |
# Function to initialize Pinecone connection | |
def initialize_pinecone(index_name: str): | |
try: | |
pc = Pinecone(api_key=PINECONE_API_KEY) | |
return pc.Index(index_name) | |
except Exception as e: | |
print(f"Error initializing Pinecone: {e}") | |
raise | |
################################################## | |
## Change down here | |
################################################## | |
# Initialize Pinecone index and BM25 encoder | |
pinecone_index = initialize_pinecone("traveler-demo-website-vectorstore") | |
bm25 = BM25Encoder().load("./bm25_traveler_website.json") | |
### This is for UAE Legislation Website | |
# pinecone_index = initialize_pinecone("uae-legislation-site-data") | |
# bm25 = BM25Encoder().load("./bm25_uae_legislation_data.json") | |
### This is for u.ae Website | |
# pinecone_index = initialize_pinecone("vector-store-index") | |
# bm25 = BM25Encoder().load("./bm25_u.ae.json") | |
# #### This is for UAE Economic Department Website | |
# pinecone_index = initialize_pinecone("uae-department-of-economics-site-data") | |
# bm25 = BM25Encoder().load("./bm25_uae_department_of_economics_data.json") | |
################################################## | |
################################################## | |
old_embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
# Initialize models and retriever | |
embed_model = HuggingFaceEmbeddings(model_name="Alibaba-NLP/gte-large-en-v1.5", model_kwargs={"trust_remote_code":True}) | |
retriever = PineconeHybridSearchRetriever( | |
embeddings=embed_model, | |
sparse_encoder=bm25, | |
index=pinecone_index, | |
top_k=20, | |
alpha=0.5 | |
) | |
# Initialize LLM | |
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, max_tokens=1024, max_retries=2) | |
# Contextualization prompt and retriever | |
contextualize_q_system_prompt = """Given a chat history and the latest user question \ | |
which might reference context in the chat history, formulate a standalone question \ | |
which can be understood without the chat history. Do NOT answer the question, \ | |
just reformulate it if needed and otherwise return it as is. | |
""" | |
contextualize_q_prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", contextualize_q_system_prompt), | |
MessagesPlaceholder("chat_history"), | |
("human", "{input}") | |
] | |
) | |
history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt) | |
# QA system prompt and chain | |
qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \ | |
If you don't know the answer, simply state that you don't know. \ | |
Your answer should be in {language} language. \ | |
Provide answers in proper HTML format and keep them concise. \ | |
When responding to queries, follow these guidelines: \ | |
1. Provide Clear Answers: \ | |
- Ensure the response directly addresses the query with accurate and relevant information.\ | |
2. Include Detailed References: \ | |
- Links to Sources: Include URLs to credible sources where users can verify information or explore further. \ | |
- Reference Sites: Mention specific websites or platforms that offer additional information. \ | |
- Downloadable Materials: Provide links to any relevant downloadable resources if applicable. \ | |
3. Formatting for Readability: \ | |
- The answer should be in a proper HTML format with appropriate tags. \ | |
- For arabic language response align the text to right and convert numbers also. | |
- Double check if the language of answer is correct or not. | |
- Use bullet points or numbered lists where applicable to present information clearly. \ | |
- Highlight key details using bold or italics. \ | |
- Provide proper and meaningful abbreviations for urls. Do not include naked urls. \ | |
4. Organize Content Logically: \ | |
- Structure the content in a logical order, ensuring easy navigation and understanding for the user. \ | |
{context} | |
""" | |
qa_prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", qa_system_prompt), | |
MessagesPlaceholder("chat_history"), | |
("human", "{input}") | |
] | |
) | |
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt) | |
# Retrieval and Generative (RAG) Chain | |
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain) | |
# Chat message history storage | |
store = {} | |
def clean_temporary_data(): | |
store.clear() | |
def get_session_history(session_id: str) -> BaseChatMessageHistory: | |
if session_id not in store: | |
store[session_id] = ChatMessageHistory() | |
return store[session_id] | |
# Conversational RAG chain with message history | |
conversational_rag_chain = RunnableWithMessageHistory( | |
rag_chain, | |
get_session_history, | |
input_messages_key="input", | |
history_messages_key="chat_history", | |
language_message_key="language", | |
output_messages_key="answer", | |
) | |
# Function to handle WebSocket connection | |
def handle_connect(): | |
print(f"Client connected: {request.sid}") | |
emit('connection_response', {'message': 'Connected successfully.'}) | |
# Function to handle WebSocket disconnection | |
def handle_disconnect(): | |
print(f"Client disconnected: {request.sid}") | |
clean_temporary_data() | |
# Function to handle WebSocket messages | |
def handle_message(data): | |
question = data.get('question') | |
language = data.get('language') | |
if "en" in language: | |
language = "English" | |
else: | |
language = "Arabic" | |
session_id = data.get('session_id', SESSION_ID_DEFAULT) | |
chain = conversational_rag_chain.pick("answer") | |
try: | |
for chunk in chain.stream( | |
{"input": question, 'language': language}, | |
config={"configurable": {"session_id": session_id}}, | |
): | |
emit('response', chunk, room=request.sid) | |
except Exception as e: | |
print(f"Error during message handling: {e}") | |
emit('response', {"error": "An error occurred while processing your request."}, room=request.sid) | |
# Home route | |
def index_view(): | |
return render_template('chat.html') | |
# Main function to run the app | |
if __name__ == '__main__': | |
print("Hello world") | |
socketio.run(app, debug=True) | |