Ritesh-hf commited on
Commit
540c3cd
1 Parent(s): 729b4c1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -121
app.py CHANGED
@@ -1,13 +1,9 @@
1
- import nltk
2
- nltk.download('punkt_tab')
3
-
4
  import os
5
  from dotenv import load_dotenv
6
  import asyncio
7
- from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect
8
- from fastapi.responses import HTMLResponse
9
- from fastapi.templating import Jinja2Templates
10
- from fastapi.middleware.cors import CORSMiddleware
11
  from langchain.chains import create_history_aware_retriever, create_retrieval_chain
12
  from langchain.chains.combine_documents import create_stuff_documents_chain
13
  from langchain_community.chat_message_histories import ChatMessageHistory
@@ -31,7 +27,6 @@ USER_AGENT = os.getenv("USER_AGENT")
31
  GROQ_API_KEY = os.getenv("GROQ_API_KEY")
32
  SECRET_KEY = os.getenv("SECRET_KEY")
33
  PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
34
- HUGGINGFACE_TOKEN = os.getenv("huggingface_api_key")
35
  SESSION_ID_DEFAULT = "abc123"
36
 
37
  # Set environment variables
@@ -39,19 +34,14 @@ os.environ['USER_AGENT'] = USER_AGENT
39
  os.environ["GROQ_API_KEY"] = GROQ_API_KEY
40
  os.environ["TOKENIZERS_PARALLELISM"] = 'true'
41
 
42
- # Initialize FastAPI app and CORS
43
- app = FastAPI()
44
- origins = ["*"] # Adjust as needed
45
-
46
- app.add_middleware(
47
- CORSMiddleware,
48
- allow_origins=origins,
49
- allow_credentials=True,
50
- allow_methods=["*"],
51
- allow_headers=["*"],
52
- )
53
-
54
- templates = Jinja2Templates(directory="templates")
55
 
56
  # Function to initialize Pinecone connection
57
  def initialize_pinecone(index_name: str):
@@ -62,6 +52,7 @@ def initialize_pinecone(index_name: str):
62
  print(f"Error initializing Pinecone: {e}")
63
  raise
64
 
 
65
  ##################################################
66
  ## Change down here
67
  ##################################################
@@ -73,29 +64,20 @@ bm25 = BM25Encoder().load("./UAE-NLA.json")
73
  ##################################################
74
  ##################################################
75
 
 
 
76
  # Initialize models and retriever
77
- embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True})
78
  retriever = PineconeHybridSearchRetriever(
79
  embeddings=embed_model,
80
  sparse_encoder=bm25,
81
  index=pinecone_index,
82
- top_k=10,
83
- alpha=0.5,
84
  )
85
 
86
- llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=512, max_retries=2)
87
-
88
-
89
  # Initialize LLM
90
- # llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=512, max_retries=2)
91
-
92
- # Initialize Reranker
93
- # model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
94
- # compressor = CrossEncoderReranker(model=model, top_n=10)
95
-
96
- # compression_retriever = ContextualCompressionRetriever(
97
- # base_compressor=compressor, base_retriever=retriever
98
- # )
99
 
100
  # Contextualization prompt and retriever
101
  contextualize_q_system_prompt = """Given a chat history and the latest user question \
@@ -113,27 +95,30 @@ contextualize_q_prompt = ChatPromptTemplate.from_messages(
113
  history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)
114
 
115
  # QA system prompt and chain
116
- qa_system_prompt = """ You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively.
117
- If you don't know the answer, simply state that you don't know.
118
- YOUR ANSWER SHOULD BE IN '{language}' LANGUAGE.
119
- When responding to queries, follow these guidelines:
120
- 1. Provide Clear Answers:
121
- - You have to answer in that language based on the given language of the answer. If it is English, answer it in English; if it is Arabic, you should answer it in Arabic.
122
- - Ensure the response directly addresses the query with accurate and relevant information.
123
- - Do not give long answers. Provide detailed but concise responses.
124
-
125
- 2. Formatting for Readability:
126
- - Provide the entire response in proper markdown format.
127
- - Use structured Markdown elements such as headings, subheadings, lists, tables, and links.
128
- - Use emphasis on headings, important texts, and phrases.
129
-
130
- 3. Proper Citations:
131
- - Always use inline citations with embedded source URLs.
132
- - The inline citations should be in the format [1], [2], etc.
133
- - DO NOT INCLUDE THE 'References' SECTION IN THE RESPONSE.
134
-
135
- FOLLOW ALL THE GIVEN INSTRUCTIONS, FAILURE TO DO SO WILL RESULT IN THE TERMINATION OF THE CHAT.
136
- == CONTEXT ==
 
 
 
137
  {context}
138
  """
139
  qa_prompt = ChatPromptTemplate.from_messages(
@@ -143,9 +128,7 @@ qa_prompt = ChatPromptTemplate.from_messages(
143
  ("human", "{input}")
144
  ]
145
  )
146
-
147
- document_prompt = PromptTemplate(input_variables=["page_content", "source"], template="{page_content} \n\n Source: {source}")
148
- question_answer_chain = create_stuff_documents_chain(llm, qa_prompt, document_prompt=document_prompt)
149
 
150
  # Retrieval and Generative (RAG) Chain
151
  rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
@@ -153,6 +136,9 @@ rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chai
153
  # Chat message history storage
154
  store = {}
155
 
 
 
 
156
  def get_session_history(session_id: str) -> BaseChatMessageHistory:
157
  if session_id not in store:
158
  store[session_id] = ChatMessageHistory()
@@ -168,69 +154,46 @@ conversational_rag_chain = RunnableWithMessageHistory(
168
  output_messages_key="answer",
169
  )
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
- # WebSocket endpoint with streaming
173
- @app.websocket("/ws")
174
- async def websocket_endpoint(websocket: WebSocket):
175
- await websocket.accept()
176
- print(f"Client connected: {websocket.client}")
177
- session_id = None
178
  try:
179
- while True:
180
- data = await websocket.receive_json()
181
- question = data.get('question')
182
- language = data.get('language')
183
- if "en" in language:
184
- language = "English"
185
- else:
186
- language = "Arabic"
187
- session_id = data.get('session_id', SESSION_ID_DEFAULT)
188
- # Process the question
189
- try:
190
- # Define an async generator for streaming
191
- async def stream_response():
192
- complete_response = ""
193
- context = {}
194
- async for chunk in conversational_rag_chain.astream(
195
- {"input": question, 'language': language},
196
- config={"configurable": {"session_id": session_id}}
197
- ):
198
- if "context" in chunk:
199
- context = chunk['context']
200
- # Send each chunk to the client
201
- if "answer" in chunk:
202
- complete_response += chunk['answer']
203
- await websocket.send_json({'response': chunk['answer']})
204
-
205
- if context:
206
- citations = re.findall(r'\[(\d+)\]', complete_response)
207
- citation_numbers = list(map(int, citations))
208
- sources = dict()
209
- backup = dict()
210
- i=1
211
- for index, doc in enumerate(context):
212
- if (index+1) in citation_numbers:
213
- sources[f"[{index+1}]"] = doc.metadata["source"]
214
- else:
215
- if doc.metadata["source"] not in backup.values():
216
- backup[f"[{i}]"] = doc.metadata["source"]
217
- i += 1
218
- if sources:
219
- await websocket.send_json({'sources': sources})
220
- else:
221
- await websocket.send_json({'sources': backup})
222
-
223
- await stream_response()
224
- except Exception as e:
225
- print(f"Error during message handling: {e}")
226
- await websocket.send_json({'response': "Something went wrong, Please try again." + str(e)})
227
- except WebSocketDisconnect:
228
- print(f"Client disconnected: {websocket.client}")
229
- if session_id:
230
- store.pop(session_id, None)
231
 
232
  # Home route
233
- @app.get("/", response_class=HTMLResponse)
234
- async def read_index(request: Request):
235
- return templates.TemplateResponse("chat.html", {"request": request})
236
 
 
 
 
 
 
 
 
1
  import os
2
  from dotenv import load_dotenv
3
  import asyncio
4
+ from flask import Flask, request, render_template
5
+ from flask_cors import CORS
6
+ from flask_socketio import SocketIO, emit, join_room, leave_room
 
7
  from langchain.chains import create_history_aware_retriever, create_retrieval_chain
8
  from langchain.chains.combine_documents import create_stuff_documents_chain
9
  from langchain_community.chat_message_histories import ChatMessageHistory
 
27
  GROQ_API_KEY = os.getenv("GROQ_API_KEY")
28
  SECRET_KEY = os.getenv("SECRET_KEY")
29
  PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
 
30
  SESSION_ID_DEFAULT = "abc123"
31
 
32
  # Set environment variables
 
34
  os.environ["GROQ_API_KEY"] = GROQ_API_KEY
35
  os.environ["TOKENIZERS_PARALLELISM"] = 'true'
36
 
37
+ # Initialize Flask app and SocketIO with CORS
38
+ app = Flask(__name__)
39
+ CORS(app)
40
+ socketio = SocketIO(app, cors_allowed_origins="*")
41
+ app.config['SESSION_COOKIE_SECURE'] = True # Use HTTPS
42
+ app.config['SESSION_COOKIE_HTTPONLY'] = True
43
+ app.config['SESSION_COOKIE_SAMESITE'] = 'Lax'
44
+ app.config['SECRET_KEY'] = SECRET_KEY
 
 
 
 
 
45
 
46
  # Function to initialize Pinecone connection
47
  def initialize_pinecone(index_name: str):
 
52
  print(f"Error initializing Pinecone: {e}")
53
  raise
54
 
55
+
56
  ##################################################
57
  ## Change down here
58
  ##################################################
 
64
  ##################################################
65
  ##################################################
66
 
67
+ # old_embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/gte-multilingual-base")
68
+
69
  # Initialize models and retriever
70
+ embed_model = HuggingFaceEmbeddings(model_name="Alibaba-NLP/gte-multilingual-base", model_kwargs={"trust_remote_code":True})
71
  retriever = PineconeHybridSearchRetriever(
72
  embeddings=embed_model,
73
  sparse_encoder=bm25,
74
  index=pinecone_index,
75
+ top_k=20,
76
+ alpha=0.5
77
  )
78
 
 
 
 
79
  # Initialize LLM
80
+ llm = ChatPerplexity(temperature=0, pplx_api_key=GROQ_API_KEY, model="llama-3.1-sonar-large-128k-chat", max_tokens=512, max_retries=2)
 
 
 
 
 
 
 
 
81
 
82
  # Contextualization prompt and retriever
83
  contextualize_q_system_prompt = """Given a chat history and the latest user question \
 
95
  history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)
96
 
97
  # QA system prompt and chain
98
+ qa_system_prompt = """You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively. \
99
+ If you don't know the answer, simply state that you don't know. \
100
+ Your answer should be in {language} language. \
101
+ Provide answers in proper HTML format and keep them concise. \
102
+ When responding to queries, follow these guidelines: \
103
+ 1. Provide Clear Answers: \
104
+ - Based on the language of the question, you have to answer in that language. E.g. if the question is in English language then answer in the English language or if the question is in Arabic language then you should answer in Arabic language. /
105
+ - Ensure the response directly addresses the query with accurate and relevant information.\
106
+ 2. Include Detailed References: \
107
+ - Links to Sources: Include URLs to credible sources where users can verify information or explore further. \
108
+ - Reference Sites: Mention specific websites or platforms that offer additional information. \
109
+ - Downloadable Materials: Provide links to any relevant downloadable resources if applicable. \
110
+
111
+ 3. Formatting for Readability: \
112
+ - The answer should be in a proper HTML format with appropriate tags. \
113
+ - For arabic language response align the text to right and convert numbers also.
114
+ - Double check if the language of answer is correct or not.
115
+ - Use bullet points or numbered lists where applicable to present information clearly. \
116
+ - Highlight key details using bold or italics. \
117
+ - Provide proper and meaningful abbreviations for urls. Do not include naked urls. \
118
+
119
+ 4. Organize Content Logically: \
120
+ - Structure the content in a logical order, ensuring easy navigation and understanding for the user. \
121
+
122
  {context}
123
  """
124
  qa_prompt = ChatPromptTemplate.from_messages(
 
128
  ("human", "{input}")
129
  ]
130
  )
131
+ question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
 
 
132
 
133
  # Retrieval and Generative (RAG) Chain
134
  rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
 
136
  # Chat message history storage
137
  store = {}
138
 
139
+ def clean_temporary_data():
140
+ store.clear()
141
+
142
  def get_session_history(session_id: str) -> BaseChatMessageHistory:
143
  if session_id not in store:
144
  store[session_id] = ChatMessageHistory()
 
154
  output_messages_key="answer",
155
  )
156
 
157
+ # Function to handle WebSocket connection
158
+ @socketio.on('connect')
159
+ def handle_connect():
160
+ print(f"Client connected: {request.sid}")
161
+ emit('connection_response', {'message': 'Connected successfully.'})
162
+
163
+ # Function to handle WebSocket disconnection
164
+ @socketio.on('disconnect')
165
+ def handle_disconnect():
166
+ print(f"Client disconnected: {request.sid}")
167
+ clean_temporary_data()
168
+
169
+ # Function to handle WebSocket messages
170
+ @socketio.on('message')
171
+ def handle_message(data):
172
+ question = data.get('question')
173
+ language = data.get('language')
174
+ if "en" in language:
175
+ language = "English"
176
+ else:
177
+ language = "Arabic"
178
+ session_id = data.get('session_id', SESSION_ID_DEFAULT)
179
+ chain = conversational_rag_chain.pick("answer")
180
 
 
 
 
 
 
 
181
  try:
182
+ for chunk in chain.stream(
183
+ {"input": question, 'language': language},
184
+ config={"configurable": {"session_id": session_id}},
185
+ ):
186
+ emit('response', chunk, room=request.sid)
187
+ except Exception as e:
188
+ print(f"Error during message handling: {e}")
189
+ emit('response', {"error": "An error occurred while processing your request."}, room=request.sid)
190
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
  # Home route
193
+ @app.route("/")
194
+ def index_view():
195
+ return render_template('chat.html')
196
 
197
+ # Main function to run the app
198
+ if __name__ == '__main__':
199
+ socketio.run(app, debug=True)