File size: 9,042 Bytes
57d62f7 91aeb7f 4e322c2 043287c 91aeb7f 95ded7e 91aeb7f 95ded7e 91aeb7f d5e7ad4 95ded7e 57d62f7 95ded7e 51aad00 95ded7e 91aeb7f 4e322c2 b89b12b 2d40920 95ded7e 2d40920 4e322c2 95ded7e 4e322c2 043287c 91aeb7f 4e322c2 b89b12b 4e322c2 f9cc0cb 2254925 b89b12b 4e322c2 ef8105a 95ded7e 91aeb7f 57d62f7 91aeb7f 4e322c2 95ded7e d5e7ad4 57d62f7 95ded7e 57d62f7 d5e7ad4 4e322c2 91aeb7f d5e7ad4 91aeb7f 4e322c2 043287c 2254925 043287c 95ded7e 043287c 555adf2 95ded7e 37beec1 043287c 2254925 91aeb7f 043287c 91aeb7f 4e322c2 91aeb7f 4e322c2 91aeb7f 4e322c2 91aeb7f b89b12b 91aeb7f 043287c 91aeb7f 043287c 51aad00 043287c 51aad00 043287c 51aad00 043287c 51aad00 043287c acb9f6f 043287c 91aeb7f 4e322c2 043287c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import nltk
nltk.download('punkt_tab')
import os
from dotenv import load_dotenv
import asyncio
from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from fastapi.middleware.cors import CORSMiddleware
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain.schema import BaseChatMessageHistory
from langchain.prompts.chat import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnableWithMessageHistory
from pinecone import Pinecone
from pinecone_text.sparse import BM25Encoder
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.retrievers import PineconeHybridSearchRetriever
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.chat_models import ChatOpenAI
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from langchain.prompts import PromptTemplate
import re
from langchain_huggingface import HuggingFaceEmbeddings
# Load environment variables
load_dotenv(".env")
USER_AGENT = os.getenv("USER_AGENT")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SECRET_KEY = os.getenv("SECRET_KEY")
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
SESSION_ID_DEFAULT = "abc123"
# Set environment variables
os.environ['USER_AGENT'] = USER_AGENT
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
os.environ["TOKENIZERS_PARALLELISM"] = 'true'
# Initialize FastAPI app and CORS
app = FastAPI()
origins = ["*"] # Adjust as needed
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
templates = Jinja2Templates(directory="templates")
# Function to initialize Pinecone connection
def initialize_pinecone(index_name: str):
try:
pc = Pinecone(api_key=PINECONE_API_KEY)
return pc.Index(index_name)
except Exception as e:
print(f"Error initializing Pinecone: {e}")
raise
##################################################
## Change down here
##################################################
# Initialize Pinecone index and BM25 encoder
pinecone_index = initialize_pinecone("updated-mbzuai-policies")
bm25 = BM25Encoder().load("./mbzuai-policies.json")
##################################################
##################################################
# Initialize models and retriever
embed_model = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v3", model_kwargs={"trust_remote_code":True})
retriever = PineconeHybridSearchRetriever(
embeddings=embed_model,
sparse_encoder=bm25,
index=pinecone_index,
top_k=20,
alpha=0.5,
)
# Initialize LLM
llm = ChatOpenAI(temperature=0, model_name="gpt-4o-mini", max_tokens=512)
# Initialize Reranker
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
compressor = CrossEncoderReranker(model=model, top_n=10)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
# Contextualization prompt and retriever
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is.
"""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}")
]
)
history_aware_retriever = create_history_aware_retriever(llm, compression_retriever, contextualize_q_prompt)
# QA system prompt and chain
qa_system_prompt = """ You are a highly skilled information retrieval assistant. Use the following context to answer questions effectively.
If you don't know the answer, simply state that you don't know.
Your answer should be in {language} language.
When responding to queries, follow these guidelines:
1. Provide Clear Answers:
- Based on the language of the question, you have to answer in that language. E.g., if the question is in English, then answer in English; if the question is in Arabic, you should answer in Arabic.
- Ensure the response directly addresses the query with accurate and relevant information.
- Do not give long answers. Provide detailed but concise responses.
2. Formatting for Readability:
- Provide the entire response in proper markdown format.
- Use structured Markdown elements such as headings, subheadings, lists, tables, and links.
- Use emphasis on headings, important texts, and phrases.
3. Proper Citations:
- ALWAYS USE INLINE CITATIONS with embedded source URLs where users can verify information or explore further.
- The inline citations should be in the format [[1]], [[2]], etc., in the response with links to reference sources.
- AT THE END OF THE RESPONSE, LIST OUT THE CITATIONS WITH THEIR SOURCES. If there are multiple citations with same source url then only mention that single source url for all of those.
FOLLOW ALL THE GIVEN INSTRUCTIONS, FAILURE TO DO SO WILL RESULT IN TERMINATION OF THE CHAT.
{context}
"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}")
]
)
document_prompt = PromptTemplate(input_variables=["page_content", "source"], template="{page_content} \n\n Source: {source}")
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt, document_prompt=document_prompt)
# Retrieval and Generative (RAG) Chain
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
# Chat message history storage
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
# Conversational RAG chain with message history
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
language_message_key="language",
output_messages_key="answer",
)
# WebSocket endpoint with streaming
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
print(f"Client connected: {websocket.client}")
session_id = None
try:
while True:
data = await websocket.receive_json()
question = data.get('question')
language = data.get('language')
if "en" in language:
language = "English"
else:
language = "Arabic"
session_id = data.get('session_id', SESSION_ID_DEFAULT)
# Process the question
try:
# Define an async generator for streaming
async def stream_response():
complete_response = ""
context = {}
async for chunk in conversational_rag_chain.astream(
{"input": question, 'language': language},
config={"configurable": {"session_id": session_id}}
):
if "context" in chunk:
context = chunk['context']
# Send each chunk to the client
if "answer" in chunk:
complete_response += chunk['answer']
await websocket.send_json({'response': chunk['answer']})
if context:
citations = re.findall(r'\[(\d+)\]', complete_response)
citation_numbers = list(map(int, citations))
sources = dict()
for index, doc in enumerate(context):
if (index+1) in citation_numbers:
sources[f"[{index+1}]"] = doc.metadata["source"]
await websocket.send_json({'sources': sources})
await stream_response()
except Exception as e:
print(f"Error during message handling: {e}")
await websocket.send_json({'response': "Something went wrong, Please try again." + str(e)})
except WebSocketDisconnect:
print(f"Client disconnected: {websocket.client}")
if session_id:
store.pop(session_id, None)
# Home route
@app.get("/", response_class=HTMLResponse)
async def read_index(request: Request):
return templates.TemplateResponse("chat.html", {"request": request}) |